Career & Technical Education Programs

<table>
<thead>
<tr>
<th>Program</th>
<th>Credit Hours</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Automotive Service Technician</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Automotive Service Technician AAS Degree</td>
<td>66-67</td>
<td></td>
</tr>
<tr>
<td>Automotive Service Technician Diploma</td>
<td>68</td>
<td></td>
</tr>
<tr>
<td>Cabinetmaking</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cabinetmaking Diploma</td>
<td>69</td>
<td></td>
</tr>
<tr>
<td>Carpentry</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carpentry Diploma</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>CNC Toolmaking</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CNC Toolmaking Diploma</td>
<td>71</td>
<td></td>
</tr>
<tr>
<td>Machine Operator Certificate (Right Skills Now)</td>
<td>72</td>
<td></td>
</tr>
<tr>
<td>Electrical Technology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electrical Technology Diploma</td>
<td>73-74</td>
<td></td>
</tr>
<tr>
<td>Electromechanical Systems</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electromechanical Systems Diploma</td>
<td>75</td>
<td></td>
</tr>
<tr>
<td>Electromechanical System Certificates:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electrical</td>
<td>76</td>
<td></td>
</tr>
<tr>
<td>Mechanical</td>
<td>77</td>
<td></td>
</tr>
<tr>
<td>Industrial Programming</td>
<td>78</td>
<td></td>
</tr>
<tr>
<td>Pipefitting</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pipefitting Diploma</td>
<td>79</td>
<td></td>
</tr>
<tr>
<td>Plumbing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plumbing Diploma</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>Sheet Metal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sheet Metal/HVAC Ducts & Fittings AAS Degree</td>
<td>81</td>
<td></td>
</tr>
<tr>
<td>Sheet Metal/HVAC Ducts & Fittings Diploma</td>
<td>82</td>
<td></td>
</tr>
<tr>
<td>Truck Technician</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Truck Technician Diploma</td>
<td>83-84</td>
<td></td>
</tr>
<tr>
<td>Welding</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Welding Technology Diploma</td>
<td>85</td>
<td></td>
</tr>
<tr>
<td>Welding Technology Certificate</td>
<td>86</td>
<td></td>
</tr>
<tr>
<td>Robotic Welding Certificate</td>
<td>87</td>
<td></td>
</tr>
<tr>
<td>360° eTECH Programs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Automation Technologies Certificate</td>
<td>88</td>
<td></td>
</tr>
<tr>
<td>Machine Technologist Certificate</td>
<td>89</td>
<td></td>
</tr>
<tr>
<td>Machining & Automation Diploma</td>
<td>90-91</td>
<td></td>
</tr>
<tr>
<td>Production Technologies Certificate</td>
<td>92</td>
<td></td>
</tr>
<tr>
<td>Welding Technology Certificate</td>
<td>93</td>
<td></td>
</tr>
</tbody>
</table>
Automotive Service Technician AAS DEGREE

Program Overview
Automotive repair requires trained technicians skilled in the use of testing equipment, special tools, and the latest information and specifications to service the many types of automobiles. Technicians diagnose trouble in any one of thousands of automotive components. They work with many new systems each year that require new service techniques and training. Some of these include air conditioning units, emission control devices, alternators, electronic ignition, and electronic fuel injection.

Students are prepared to take the ASE certification tests when they have completed the program. ASE certifies technicians nationwide.

Students should have good mechanical aptitude, be in good physical condition and have the ability to get along with others. Students also need to be able to read and process technical information.

Career Opportunities
Opportunities are expected to be plentiful for automotive technicians with technical training according to the U.S. Department of Labor. The department also states that the growing complexity of automotive technology, such as the use of electronic and emissions control equipment increasingly necessitates that cars be serviced by professionals.

The auto technician may work in a dealership garage, an independent garage, or as a specialist. Opportunities exist for a technician to become a shop service salesperson, new car dealership service manager, or shop owner.

Program Outcomes
1. Graduates will be prepared to pass all 8 ASE tests.
2. Graduates will have knowledge and skills in use of testing equipment, special tools, and specifications for servicing automobiles.
3. Graduates will have the knowledge and skills to diagnose problems in automotive systems.
4. Graduates will be prepared for employment as Automotive Service Technicians.
5. Graduates will have proficient communication skills for customer service.
6. Graduates will have business and management skills required of an automotive service technician.

Program Faculty
Llewellyn Olivier
llewellyn.olivier@saintpaul.edu
John Purcell
john.purcell@saintpaul.edu
David Vorderbruggen
david.vorderbruggen@saintpaul.edu
Jake Yernberg
jake.yernberg@saintpaul.edu

Program Requirements
☐ Check off when completed
Successful completion of each semester in this program is a prerequisite for participation in the following semester.

Course Cr
☐ AUTO 1415 Introduction to Automotive Technology ..4
☐ AUTO 1430 Brakes ..4
☐ AUTO 1441 Alignment & Suspension ..4
☐ AUTO 1510 Clutch/Driveline Manual Transmission3
☐ AUTO 1523 Four Wheel Drive Differential ..3
☐ AUTO 1530 Basic Electrical & Battery ..3
☐ AUTO 1540 Basic Engine Management ..3
☐ AUTO 1550 Heating & Air Conditioning ..4
☐ AUTO 2410 Starting & Charging Systems ..3
☐ AUTO 2420 Electrical Accessories ..3
☐ AUTO 2430 Engine Theory & Repair ..4
☐ AUTO 2440 Engine Installation ..2
☐ AUTO 2450 Introduction to Auto Computers ..2
☐ AUTO 2513 Fuel Systems ..3
☐ AUTO 2520 Engine Drivability ..3
☐ AUTO 2530 Automatic Transmission Theory2
☐ AUTO 2542 Automatic Transmission Diagnosis & Repair ..4
☐ AUTO 2550 Specialized Lab 1 ..2
Subtotal ..56
General Education/MnTC Requirements Cr
Refer to the Minnesota Transfer Curriculum Course List for each Goal Area
☐ Goal 1: Communication ..7
☐ ENGL 1711 Composition 1 – 4 cr
☐ COMM 17XX – 3 cr
☐ Goal 2 or Goal 4 ..3
☐ Goal 3: Natural Sciences OR
☐ Goal 4: Mathematical/Logical Reasoning
☐ Goal 5: History, Social Science, and Behavioral Sciences ..3
☐ Goal 6: Humanities and Fine Arts ..3
General Education Requirements ..16
Total Program Credits ..72

Tool Costs
Students will need to supply their own basic tools and tool box. The estimated cost for professional quality tools and tool box is approximately $2,000–$3,000. Tool vendors will be on campus during the first week.

Program Start Dates
Fall (AAS General Education credits can be taken any term)

Length of Program
This is a full-time, day and evening program. The program can be completed in four semesters. Students can enroll in the program only in the fall.

Admission Requirement
Admission requires completion of the Automotive Service Technician Diploma, or concurrent enrollment in the second year Auto Technician program.

Program Faculty
Llewellyn Olivier
llewellyn.olivier@saintpaul.edu
John Purcell
john.purcell@saintpaul.edu
David Vorderbruggen
david.vorderbruggen@saintpaul.edu
Jake Yernberg
jake.yernberg@saintpaul.edu

Program Requirements
☐ Check off when completed
Successful completion of each semester in this program is a prerequisite for participation in the following semester.

Course Cr
☐ AUTO 1415 Introduction to Automotive Technology ..4
☐ AUTO 1430 Brakes ..4
☐ AUTO 1441 Alignment & Suspension ..4
☐ AUTO 1510 Clutch/Driveline Manual Transmission3
☐ AUTO 1523 Four Wheel Drive Differential ..3
☐ AUTO 1530 Basic Electrical & Battery ..3
☐ AUTO 1540 Basic Engine Management ..3
☐ AUTO 1550 Heating & Air Conditioning ..4
☐ AUTO 2410 Starting & Charging Systems ..3
☐ AUTO 2420 Electrical Accessories ..3
☐ AUTO 2430 Engine Theory & Repair ..4
☐ AUTO 2440 Engine Installation ..2
☐ AUTO 2450 Introduction to Auto Computers ..2
☐ AUTO 2513 Fuel Systems ..3
☐ AUTO 2520 Engine Drivability ..3
☐ AUTO 2530 Automatic Transmission Theory2
☐ AUTO 2542 Automatic Transmission Diagnosis & Repair ..4
☐ AUTO 2550 Specialized Lab 1 ..2
Subtotal ..56
General Education/MnTC Requirements Cr
Refer to the Minnesota Transfer Curriculum Course List for each Goal Area
☐ Goal 1: Communication ..7
☐ ENGL 1711 Composition 1 – 4 cr
☐ COMM 17XX – 3 cr
☐ Goal 2 or Goal 4 ..3
☐ Goal 3: Natural Sciences OR
☐ Goal 4: Mathematical/Logical Reasoning
☐ Goal 5: History, Social Science, and Behavioral Sciences ..3
☐ Goal 6: Humanities and Fine Arts ..3
General Education Requirements ..16
Total Program Credits ..72

Minimum Program Entry Requirements
Students entering this program must meet the following minimum program entry requirements:

Reading: Score of 240+ or grade of “C” or better in READ 0721 or READ 0724 or EAPP 0860

Writing: Score of 240+ or grade of “C” or better in ENGL 0921 or EAPP 0870

Arithmetic: Score of 237+

Spatial assessment required: Score 10+

Shop/classroom visit recommended; student must have a valid driver’s license.

Assessment Results and Prerequisites: Students admitted into Saint Paul College programs may need to complete additional courses based on assessment results and course prerequisite requirements. Certain MATH, READ, and ENGL courses have additional prerequisites.

278A
Course Sequence
The following sequence is recommended; however, this sequence is not required. Contact Program Faculty with questions.

First Semester
AUTO 1415 Introduction to Automotive Technology ... 4
AUTO 1430 Brakes ... 4
AUTO 1510 Clutch/Driveline Manual Transmission ... 3
AUTO 1530 Basic Electrical & Battery .. 3
ENGL 1711 Composition 1 ... 4
Total Semester Credits ... 18

Second Semester
AUTO 1441 Alignment & Suspension .. 4
AUTO 1523 Four Wheel Drive Differential .. 3
AUTO 1540 Basic Engine Management .. 3
AUTO 1550 Heating & Air Conditioning ... 4
Goal 1: COMM 17XX ... 3
Total Semester Credits ... 17

Third Semester
AUTO 2410 Starting & Charging Systems ... 3
AUTO 2420 Electrical Accessories ... 3
AUTO 2430 Engine Theory & Repair .. 4
AUTO 2440 Engine Installation ... 2
AUTO 2450 Introduction to Auto Computers ... 2
Goal Area 3 or 4 ... 3
Goal Area 5 ... 3
Total Semester Credits ... 20

Fourth Semester
AUTO 2513 Fuel Systems ... 3
AUTO 2520 Engine Drivability ... 3
AUTO 2530 Auto Transmission Theory .. 2
AUTO 2542 Auto Tran Diagnosis & Repair ... 4
AUTO 2550 Specialized Lab 1 ... 2
Goal Area 6 ... 3
Total Semester Credits ... 17

Any Semester
General Education requirement courses may be taken before, after or concurrently with the Automotive Service Technician courses.

General Education Requirements ... 16

Total Program Credits ... 72

Transfer Opportunities
Saint Paul College has a transfer articulation agreement between the following program and post-secondary institutions for the baccalaureate degree programs listed below.

For more information please go to saintpaul.edu/Transfer.

Automotive Service Technician AAS
BA Individualized Studies Metropolitan State University
Automotive Service Technician DIPLOMA

Program Overview
Automotive repair requires trained technicians skilled in the use of testing equipment, special tools, and the latest information and specifications to service the many types of automobiles. Technicians diagnose trouble in any one of thousands of automotive components. They work with many new systems each year that require new service techniques and training. Some of these include air conditioning units, emission control devices, alternators, electronic ignition, and electronic fuel injection. Students are prepared to take the ASE certification tests when they have completed the program. ASE certifies technicians nationwide.

Students should have good mechanical aptitude, be in good physical condition and have the ability to get along with others. Students also need to be able to read and process technical information.

Career Opportunities
Opportunities are expected to be plentiful for automotive technicians with technical training according to the U.S. Department of Labor.

The department also states that the growing complexity of automotive technology, such as the use of electronic and emissions control equipment increasingly necessitates that cars be serviced by professionals.

The auto technician may work in a dealership garage, an independent garage, or as a specialist. Opportunities exist for a technician to become shop service sales person, new car dealership service manager, or shop owner.

Program Outcomes
1. Graduates will be prepared to pass all 8 ASE tests.
2. Graduates will have knowledge and skills in use of testing equipment, special tools, and specifications for servicing automobiles.
3. Graduates will have the knowledge and skills to diagnose problems in automotive systems.
4. Graduates will be prepared for employment as Automotive Service Technicians.

Program Faculty
Llewellyn Ollivier
lllewellyn.ollivier@saintpaul.edu
John Purcell
john.purcell@saintpaul.edu
David Vorderbruggen
david.vorderbruggen@saintpaul.edu
Jake Yernberg
jake.yernberg@saintpaul.edu

Length of Program
This is a full-time, day and evening program. The program can be completed in four semesters. Students can enroll in the program only in the fall.

Tool costs
Students will need to supply their own basic tools and tool box. The estimated cost for professional quality tools and tool box is approximately $2,000–$3,000.

Tool vendors will be on campus during the first week.

Program Requirements
☐ Check off when completed

Successful completion of each semester in this program is a prerequisite for participation in the following semester.

Course Cr
☐ AUTO 1415 Introduction to Automotive Technology 4
☐ AUTO 1430 Brakes 4
☐ AUTO 1441 Alignment & Suspension 4
☐ AUTO 1510 Clutch/DriveLine Manual Transmission 3
☐ AUTO 1523 Four Wheel Drive Differential 3
☐ AUTO 1530 Basic Electrical & Battery 3
☐ AUTO 1540 Basic Engine Management 3
☐ AUTO 1550 Heating & Air Conditioning 4
☐ AUTO 2410 Starting/Charging Systems 3
☐ AUTO 2420 Electrical Accessories 3
☐ AUTO 2430 Engine Theory & Repair 4
☐ AUTO 2450 Intro to Auto Computers 2
☐ AUTO 2500 Specialized Lab 1 2

Total Program Credits 56

Minimum Program Entry Requirements
Students entering this program must meet the following minimum program entry requirements:

Reading: Score of 240+ or grade of “C” or better in READ 0721 or READ 0724 or EAPP 0860

Writing: Score of 225+

Arithmetic: Score of 237+

Spatial assessment required: Score 10+

Shop/classroom visit recommended; student must have a valid driver’s license.

Assessment Results and Prerequisites:
Students admitted into Saint Paul College programs may need to complete additional courses based on assessment results and course prerequisite requirements. Certain MATH, READ, and ENGL courses have additional prerequisites.

Program Start Dates
Fall

Course Sequence

First Semester
AUTO 1415 Intro to Automotive Technology 4
AUTO 1430 Brakes ... 4
AUTO 1510 Clutch/DriveLine Manual Transmission 3
AUTO 1530 Basic Electrical & Battery 3
Total Semester Credits 14

Second Semester
AUTO 1441 Alignment & Suspension 4
AUTO 1523 Four Wheel Drive & Differential 3
AUTO 1540 Basic Engine Management 3
AUTO 1550 Heating & Air Conditioning 4
Total Semester Credits 14

Third Semester
AUTO 2410 Starting & Charging Systems 3
AUTO 2420 Electrical Accessories 3
AUTO 2430 Engine Theory & Repair 4
AUTO 2450 Installation 2
AUTO 2450 Intro to Auto Computers 2
Total Semester Credits 14

Fourth Semester
AUTO 2513 Fuel Systems 3
AUTO 2520 Engine Drivability 3
AUTO 2530 Auto Transmission Theory 2
AUTO 2542 Auto Tran Diagnosis & Repair 4
AUTO 2550 Specialized Lab 1 2
Total Semester Credits 14

Total Program Credits ... 56

Information is subject to change. This Program Requirements Guide is not a contract.
Cabinetmaking DIPLOMA

Program Overview
Cabinetmakers are skilled in the phases of cabinet construction from the initial drafting and layout, to material cutting, assembly, finishing and installation. The principles used in building kitchen cabinets are also used in building store fixtures, furniture and all other types of woodworking. The program prepares students to work for cabinet manufacturers and custom cabinet shops.

Career Opportunities
New construction in housing and industry, and the renovation and modernization of existing structures are expected to increase the demand for cabinetmakers.

Cabinetmaking graduates find positions in kitchen cabinet shops, lumber companies, sash and door factories, store fixture manufacturers, display shops, wood specialty shops, and furniture repair shops. Some graduates operate their own business.

Program Outcomes
1. Practice safe use of woodworking tools and equipment.
2. Build both framed and frameless cabinets to industry standards.
3. Design parts using CAD/CAM software and generate the part using the cnc router.
4. Fabricate laminate products.
5. Explain project details specified through plans.

Program Faculty
Thomas Hillstead
thomas.hillstead@saintpaul.edu

Full-time enrollment is required
This is a full-time day program. Students should plan for a full day of classes.

Textbook, tool, and supply costs
Additional program costs total approximately $1,250 for the following:
- Tools: $500.00
- Books & Supplies: $350.00
- Projects (costs vary) about: $400.00

Program Requirements
☐ Check off when completed

MATH 1411 – Applied Math is required for program graduation. It should be taken by the end of the first semester.

<table>
<thead>
<tr>
<th>Course</th>
<th>Cr</th>
</tr>
</thead>
<tbody>
<tr>
<td>CABT 1450 Print Reading</td>
<td>2</td>
</tr>
<tr>
<td>CABT 1455 Traditional Machining Methods</td>
<td>5</td>
</tr>
<tr>
<td>CABT 1460 Wood Technology</td>
<td>2</td>
</tr>
<tr>
<td>CABT 1465 Furniture & Residential Cabinetry</td>
<td>5</td>
</tr>
<tr>
<td>CABT 1470 CAD/CNC</td>
<td>2</td>
</tr>
<tr>
<td>CABT 1475 Industrial Machining Methods</td>
<td>4</td>
</tr>
<tr>
<td>CABT 2450 Surface Applications</td>
<td>4</td>
</tr>
<tr>
<td>CABT 2455 Casework & Millwork</td>
<td>5</td>
</tr>
<tr>
<td>CABT 2515 CNC Cabinet Design</td>
<td>3</td>
</tr>
<tr>
<td>Choose one of the following</td>
<td></td>
</tr>
<tr>
<td>CABT 2690 Capstone Project/Open Lab</td>
<td></td>
</tr>
<tr>
<td>CABT 2695 Internship</td>
<td></td>
</tr>
<tr>
<td>MATH 1411 Applied Math</td>
<td>3</td>
</tr>
</tbody>
</table>

Total Program Credits 37

Minimum Program Entry Requirements
Students entering this program must meet the following minimum program entry requirements:

Reading: Score of 240+ or grade of “C” or better in READ 0721 or READ 0724 or EAPP 0860
Writing: Score of 225+
Arithmetic: Score of 250+

Assessment Results and Prerequisites:
Students admitted into Saint Paul College programs may need to complete additional courses based on assessment results and course prerequisite requirements. Certain MATH, READ, and ENGL courses have additional prerequisites.

Program Start Dates
Fall, Spring

Additional Requirements/Recommendations
Mathematics and drawing skills are helpful. Students need to be alert, physically fit and have good vision.

Students are expected to attend all classes and be prompt.

It is necessary to have good hand and eye coordination. Safety will be a major factor in operating all equipment. Safety is taught and students must pass all safety tests before operating equipment.

Course Sequence
The following sequence is recommended for a full-time student; however, this sequence is not required. Not all courses are offered each semester.

Fall Semester
CABT 1450 Print Reading 2
CABT 1455 Traditional Machining Methods 5
CABT 1460 Wood Technology 2
CABT 1465 Furniture & Residential Cabinetry 5
CABT 1470 CAD/CNC 2
CABT 1475 Industrial Machining Methods 4
CABT 2450 Surface Applications 4
CABT 2455 Casework & Millwork 5
CABT 2515 CNC Cabinet Design 3
Choose one of the following 2
CABT 2690 Capstone Project/Open Lab
CABT 2695 Internship
MATH 1411 Applied Math 3
Total Semester Credits 19

Spring Semester
CABT 1475 Industrial Machining Methods 4
CABT 2450 Surface Applications 4
CABT 2455 Casework & Millwork 5
CABT 2515 CNC Cabinet Design 3
Choose one of the following 2
CABT 2690 Capstone Project/Open Lab
CABT 2695 Internship
Total Semester Credits 18

Total Program Credits 37

Information is subject to change.
This Program Requirements Guide is not a contract.
Program Overview
Construction is the largest industry in terms of investment and manpower expended. Carpenters make up the largest trade group in the construction industry. They erect the wood framework in buildings; they install wood paneling, cabinets, door and window frames, and hardware; and they build stairs and frame roofs. Carpenters work under a wide variety of conditions, indoors and out, in all types of weather. They use many different hand and power tools working with wood, concrete, metals, plastics, and other construction materials.

Good work habits, mechanical aptitude, and strong communication and math skills are necessary to become a successful carpenter. Carpenters must be able to climb, lift, carry, measure, calculate, and plan their work. They often work at considerable heights.

Career Opportunities
Construction activity continues to be strong. Demand for quality carpenters exists in residential, commercial, and heavy construction. Increased activity in infrastructure and building renovation has provided additional opportunities for carpenters.

Carpenters can be involved in the many different phases of a building project or choose to specialize in areas such as framing, drywall, acoustic ceilings, concrete form building, hardware, and millwork. Many graduates continue their training by entering a formal apprentice program. Carpenter apprentices advance to journeyperson by working on the job and attending classes related to their work. Advancement can continue to lead carpenter, carpenter foreman, and job superintendent. Carpenters are employed by a wide variety of construction contractors, or they may choose to become self-employed in their own business.

Program Outcomes
1. Graduates will have the knowledge and skills to safely use hand and portable power tools used by carpenters in the construction industry.
2. Graduates will be able to work with wood, plastics, concrete, metals, gypsum, and various fiber composite products used by carpenters in the construction industry.
3. Graduates will have practiced procedures used by carpenters in framing layout, stair construction, wood and steel framing, and installation of doors, windows, and cabinets.
4. Graduates will be familiar with forming systems and types of scaffold used in concrete construction.
5. Graduates will be familiar with and have practiced job site safety requirements.
6. Graduates will be able to operate instruments and demonstrate procedures used in building layout.
7. Graduates will display effective work habits deemed necessary by employers.
8. Graduates will be prepared for entry level employment as carpenters and admission to the Carpenters Apprentice Training Program.

Full-time enrollment is required
This is a full-time day program. Students should plan for a full day of classes.

Special supplies and tool costs
Students should expect to spend approximately $1,100, beyond the cost of tuition, fees, and books, for special supplies and tools. A list is available from the advisor.

Program Requirements
☐ Check off when completed

<table>
<thead>
<tr>
<th>Course</th>
<th>Cr</th>
</tr>
</thead>
<tbody>
<tr>
<td>CARP 1410 Project Estimating</td>
<td>3</td>
</tr>
<tr>
<td>CARP 1420 Construction Blueprint Reading</td>
<td>2</td>
</tr>
<tr>
<td>CARP 1430 Intro to Carpentry & Hand Tools</td>
<td>3</td>
</tr>
<tr>
<td>CARP 1510 Intermediate Carpentry</td>
<td>5</td>
</tr>
<tr>
<td>CARP 1521 Building Technology</td>
<td>5</td>
</tr>
<tr>
<td>CARP 1522 Power Tool and Shop Procedures</td>
<td>5</td>
</tr>
<tr>
<td>CARP 2410 Advanced Carpentry</td>
<td>6</td>
</tr>
<tr>
<td>CARP 2421 Fieldwork and Carpentry Procedures</td>
<td>5</td>
</tr>
<tr>
<td>CARP 2422 Carpentry Concrete Technology and Installation</td>
<td>5</td>
</tr>
<tr>
<td>MATH 1411 Applied Mathematics</td>
<td>3</td>
</tr>
</tbody>
</table>

Total Program Credits 42

Program Faculty
Perry Franzen
perry.franzen@saintpaul.edu
651.846.1405

Program Start Dates
Summer

Course Sequence
The following sequence is required.

First Term
CARP 1410 Project Estimating 3
CARP 1420 Construction Blueprint Reading 2
CARP 1430 Intro to Carpentry & Hand Tools 3
Total Semester Credits 8

Second Semester
CARP 1510 Intermediate Carpentry 5
CARP 1521 Building Technology 5
CARP 1522 Power Tool and Shop Procedures 5
MATH 1411 Applied Mathematics 3
Total Semester Credits 18

Third Semester
CARP 2410 Advanced Carpentry 6
CARP 2421 Fieldwork and Carpentry Procedures 5
CARP 2422 Carpentry Concrete Technology and Installation 5
Total Semester Credits 16
Total Program Credits 42

Minimum Program Entry Requirements
Students entering this program must meet the following minimum program entry requirements:

Reading: Score of 240+ or grade of “C” or better in READ 0721 or READ 0724 or EAPP 0860
Writing: Score of 225+
Arithmetic: Score of 250+

Assessment Results and Prerequisites:
Students admitted into Saint Paul College programs may need to complete additional courses based on assessment results and course prerequisite requirements. Certain MATH, READ, and ENGL courses have additional prerequisites.
Program Overview
This area produces skilled craftspeople who make precision metal parts that are highly specialized and not mass produced. Machinists produce parts from metal castings, forgings, stampings, or from solid metal stock. They make parts to exact specifications by removing excess metal with the aid of machine tools, numerically controlled machines, computer assisted machinery, and precise measuring and gauging equipment.

Career Opportunities
As the economy expands, so will the demand for manufactured goods that need machine metal parts. CNC Toolmaking graduates are hired by industries that manufacture automobiles, industrial machinery, military equipment, and other metal products. At many places of employment, graduates can apply training received at the College towards the completion of apprenticeship requirements.

Program Outcomes
1. Graduates will have the knowledge and skills to make precision-machined parts and tooling.
2. Graduates will have the knowledge and skills to program and operate CNC equipment using CAD and CAM.
3. Graduates will have the knowledge and skills to operate and set-up inspection and gauging equipment.
4. Graduates will have the knowledge and skills to meet national entry-level skills standards.
5. Graduates will have acquired shop communication skills such as blueprint reading, practical geometric dimensioning, and shop CAD/CAM skills.
6. Graduates will have successfully mastered the general education program requirements for work and life skills.
7. Graduates will use SolidWorks, design parts and collaborate with engineers.

Program Faculty
Garrett Byrne
garrett.byrne@saintpaul.edu
Ben Johnson
ben.johnson@saintpaul.edu
Scott Nordahl
scott.nordahl@saintpaul.edu
Ker Xiong
ker.xiong@saintpaul.edu

Estimated Cost for Student Supplies
The estimated cost for student supplies is $850.

Program Start Dates
Fall, Spring

Course Sequence
The following sequence is recommended for a full-time student; however, this sequence is not required.

First Semester
CNCT 1410 Introduction to Manufacturing Processes.......................... 4
CNCT 1420 Engineering Drawings .. 4
CNCT 1430 Materials Processes 1 .. 4
CNCT 1431 Materials Processes 2 .. 4
CNCT 1710 Shop Calculations ... 2
CNCT 1720 Geometric Dimensioning 2
CNCT 1730 CNC 1 .. 4
CNCT 1731 CNC 2 .. 4
CNCT 1744 Metrology .. 4
CNCT 2412 Tool Design .. 4
CNCT 2421 Mechanical Systems/EDM 4
CNCT 2431 Mold/Plastic Technology 4
CNCT 2441 CNC Applications ... 4
CNCT 2520 CAD .. 4
CNCT 2530 CNC Lathe .. 4
CNCT 2540 Computer Aided Manufacturing 4
Subtotal .. 60

General Education/MnTC Requirements .. Cr
Refer to the Minnesota Transfer Curriculum Course List for each Goal Area
☐ Any college level general education course 3
General Education Requirements 3

Total Program Credits ... 63

Minimum Program Entry Requirements
Students entering this program must meet the following minimum program entry requirements:

Reading: Score of 240+ or grade of “C” or better in READ 0721 or READ 0724 or EAPP 0860

Writing: Score of 225+

Arithmetic: Score of 237+

Assessment Results and Prerequisites:
Students admitted into Saint Paul College programs may need to complete additional courses based on assessment results and course prerequisite requirements. Certain MATH, READ, and ENGL courses have additional prerequisites.
Program Requirements Guide 2021-2022

Machine Operator CERTIFICATE
Right Skills Now for Manufacturing

Program Overview
The Right Skills Now (for Manufacturing) certificate is designed to provide training in the following areas: Job planning, benchwork, materials, manual milling, manual turning, blue print reading, CNC milling and CNC turning. This program was designed to address the current shortage of CNC operators. Graduates from this program are prepared to enter the industry as entry-level manual and CNC machine tool production operators with minimum skills. The Right Skills Now (for Manufacturing) certificate will introduce manufacturing workplace safety, blueprint reading, general manufacturing processes, basic production manual machining skills, and introduction to operations.

The curriculum closely aligns with standards set forth by the National Institute of Metalworking Skills (NIMS). Students may choose to apply these credits towards a CNC Toolmaking Diploma. The additional coursework will enhance the students' communication, mathematics, machining, CAD/CAM, and critical thinking skills.

Career Opportunities
Right Skills Now is a pathway of the National Association of Manufacturers (NAM)–Endorsed Manufacturing Skills Certification System, which includes nationally portable, industry-recognized certifications that are combined with for-credit education programs. These education pathways are directly aligned to career pathways in manufacturing, so students progressing through the programs earn college credit towards a degree, have an opportunity to earn a national certification with labor market value, and the degree, have an opportunity to earn a national certification with labor market value, and the degree, have an opportunity to earn a national certification with labor market value, and the degree, have an opportunity to earn a national certification with labor market value.

Program Outcomes
1. Students will have skills to operate computer-controlled machine tools; lathes, drills, and milling machines.
2. Graduates will acquire knowledge of workplace safety.
3. Graduates will have on the job learning opportunities through an internship.

Program Faculty
Garrett Byrne
garrett.byrne@saintpaul.edu
Ben Johnson
ben.johnson@saintpaul.edu
Scott Nordahl
scott.nordahl@saintpaul.edu
Ker Xiong
ker.xiong@saintpaul.edu

Estimated Cost for Student Supplies
The estimated cost for student supplies is $850.

Program Requirements
☐ Check off when completed
Certain classes must be taken concurrently and certain classes are prerequisites to other classes.

Course	Cr
CNCT 1410 Introduction to Manufacturing Processes | 4
CNCT 1420 Engineering Drawing | 4
CNCT 1430 Materials Processes 1 | 4
CNCT 1431 Materials Processes 2 | 4
CNCT 2550 Industry Internship* | 4

Total Program Credits | 20

Minimum Program Entry Requirements
Students entering this program must meet the following minimum program entry requirements:

Reading: Score of 240+ or grade of “C” or better in READ 0721 or READ 0724 or EAPP 0860
Writing: Score of 225+
Arithmetic: Score of 237+

Assessment Results and Prerequisites:
Students admitted into Saint Paul College programs may need to complete additional courses based on assessment results and course prerequisite requirements. Certain MATH, READ, and ENGL courses have additional prerequisites.

Information is subject to change.
This Program Requirements Guide is not a contract.

342C
Electrical Technology DIPLOMA

Program Overview
An electrician is employed to install electrical wiring and equipment for lighting, heating, cooling and other power requirements in residential, commercial and industrial buildings. Using blueprints, diagrams and specifications, students perform installations in accordance with national, state and local safety codes. Considerable physical exertion is often required and the work may be performed outdoors or under such hazardous conditions as heights, unfinished construction or high voltages.

Students should have an interest and aptitude in applied algebra, trigonometry, drawing and science. Good eyesight and color vision are important.

Career Opportunities
According to the U.S. Department of Labor, “As the population and the economy grow... more electricians will be needed to maintain the electrical systems used by industry and to install electrical devices and wiring in new homes, factories, offices and other structures.”

Graduates are employed as apprentices by electrical construction firms. Upon completion of apprenticeship and the obtaining of a journeyperson’s license, students are open to opportunities as master electricians, inspectors, contractors, estimators and repair persons.

Program Outcomes
1. Graduates will have the ability to communicate and conduct themselves in a professional manner with the customers and co-workers.
2. Graduates will have the skills for performing entry level tasks required of an apprentice electrician in residential, commercial and industrial construction.
3. Graduates will have knowledge of the National Electric Code, enabling them to legally and safely install electrical services with supervision.
4. Graduates will have the ability to apply electrical theory to practical applications.
5. Graduates will meet the MN Department of Labor and Industry’s electrical program requirement of specific curriculum and 95% course attendance policy.

Apprenticeship opportunity
Completion of the Electrical Technology Diploma program meets the Minnesota Department of Labor and Industry requirements. 95% attendance in each course and completion of the diploma may qualify for one year of apprenticeship credit.

Program Faculty
George Schaus
george.schaus@saintpaul.edu
651.846.1631

Julie Selton
julie.selton@saintpaul.edu
651.846.1770

Keith Setley
keith.setley@saintpaul.edu
651.846.1539

Dean Weikle
dean.weikle@saintpaul.edu
651.846.1790

Program Start Dates
Fall, Spring
Students must attend orientation.

Technical Electives
Select the course below to meet the MN DOLI 95% attendance requirement:
ELTN 1470 Electrical Technology Operations

Textbook, tool, and supply costs
• Textbooks are required the first day of class. Go to www.saintpaulcollegebookstore.com for textbook information.
• Multimeter and hand tools, approximately $500 new.

Program Requirements
☐ Check off when completed

Certain classes must be taken concurrently and certain classes are prerequisites to other classes.

<table>
<thead>
<tr>
<th>Course</th>
<th>Cr</th>
</tr>
</thead>
<tbody>
<tr>
<td>ELTN 1410 National Electrical Code 1 and</td>
<td></td>
</tr>
<tr>
<td>Trade Calculations</td>
<td>4</td>
</tr>
<tr>
<td>ELTN 1422 Direct Current Circuit Analysis</td>
<td>5</td>
</tr>
<tr>
<td>ELTN 1432 Alternating Current Circuit Analysis</td>
<td>5</td>
</tr>
<tr>
<td>ELTN 1442 Single-Phase Motors and Generators</td>
<td>5</td>
</tr>
<tr>
<td>ELTN 1512 Three-Phase Systems Motors and Generators</td>
<td>5</td>
</tr>
<tr>
<td>ELTN 1522 Introduction to Electronics and Test Equipment</td>
<td>5</td>
</tr>
<tr>
<td>ELTN 1532 Intermediate Electronics and PLC's</td>
<td>5</td>
</tr>
<tr>
<td>ELTN 1540 Low Voltage Systems and Job Site Safety</td>
<td>4</td>
</tr>
<tr>
<td>ELTN 2410 Distribution Power and Specialty Transformers</td>
<td>4</td>
</tr>
<tr>
<td>ELTN 2420 Motor Controls</td>
<td>4</td>
</tr>
<tr>
<td>ELTN 2430 Residential Wiring and Blueprint Reading</td>
<td>4</td>
</tr>
<tr>
<td>ELTN 2440 Heating and Cooling System Controls</td>
<td>4</td>
</tr>
<tr>
<td>ELTN 2510 Wiring Methods and Systems</td>
<td>4</td>
</tr>
<tr>
<td>ELTN 2522 Commercial Wiring Methods</td>
<td>5</td>
</tr>
<tr>
<td>ELTN 2523 Industrial Wiring Methods and Service Entrance</td>
<td>5</td>
</tr>
<tr>
<td>ELTN 2540 National Electrical Code 2</td>
<td>4</td>
</tr>
<tr>
<td>ELTN 2550 Renewable Energy</td>
<td>2</td>
</tr>
</tbody>
</table>

Total Program Credits 74

Minimum Program Entry Requirements
Students entering this program must meet the following minimum program entry requirements:

Reading: Score of 240+ or grade of “C” or better in READ 0721 or READ 0724 or EAPP 0860

Writing: Score of 240+ or grade of “C” or better in ENGL 0921 or EAPP 0870

Arithmetic: Score of 237+

Assessment Results and Prerequisites:
Students admitted into Saint Paul College programs may need to complete additional courses based on assessment results and course prerequisite requirements. Certain MATH, READ, and ENGL courses have additional prerequisites.
Course Sequence

The course sequence listed on the back of this guide is recommended for a full-time student; however, this sequence is not required. Contact Program Faculty with questions.

First Semester

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ELTN 1410</td>
<td>National Electrical Code 1 and Trade Calculations</td>
<td>4</td>
</tr>
<tr>
<td>ELTN 1422</td>
<td>Direct Current Circuit Analysis</td>
<td>5</td>
</tr>
<tr>
<td>ELTN 1432</td>
<td>Alternating Current Circuit Analysis</td>
<td>5</td>
</tr>
<tr>
<td>ELTN 1442</td>
<td>Single-Phase Motors and Generators</td>
<td>5</td>
</tr>
</tbody>
</table>

Total Semester Credits: 19

Second Semester

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ELTN 1512</td>
<td>Three-Phase Systems Motors and Generators</td>
<td>5</td>
</tr>
<tr>
<td>ELTN 1522</td>
<td>Introduction to Electronics and Test Equipment</td>
<td>5</td>
</tr>
<tr>
<td>ELTN 1532</td>
<td>Intermediate Electronics and PLC's</td>
<td>5</td>
</tr>
<tr>
<td>ELTN 1540</td>
<td>Low Voltage Systems and Job Site Safety</td>
<td>4</td>
</tr>
</tbody>
</table>

Total Semester Credits: 19

Third Semester

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ELTN 2410</td>
<td>Distribution Power and Specialty Transformers</td>
<td>4</td>
</tr>
<tr>
<td>ELTN 2420</td>
<td>Motor Controls</td>
<td>4</td>
</tr>
<tr>
<td>ELTN 2430</td>
<td>Residential Wiring and Blueprint Reading</td>
<td>4</td>
</tr>
<tr>
<td>ELTN 2440</td>
<td>Heating and Cooling System Controls</td>
<td>4</td>
</tr>
</tbody>
</table>

Total Semester Credits: 16

Fourth Semester

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ELTN 2510</td>
<td>Wiring Methods and Systems</td>
<td>4</td>
</tr>
<tr>
<td>ELTN 2522</td>
<td>Commercial Wiring Methods</td>
<td>5</td>
</tr>
<tr>
<td>ELTN 2532</td>
<td>Industrial Wiring Methods and Service Entrance</td>
<td>5</td>
</tr>
<tr>
<td>ELTN 2540</td>
<td>National Electrical Code 2</td>
<td>4</td>
</tr>
<tr>
<td>ELTN 2550</td>
<td>Renewable Energy</td>
<td>2</td>
</tr>
</tbody>
</table>

Total Semester Credits: 20

Total Program Credits: 74
Program Requirements Guide 2021-2022

Electromechanical Systems DIPLOMA

Program Overview
Electromechanical systems, also referred to as mechatronics, is a new and rapidly growing field that integrates electronics, mechanics, pneumatics, hydraulics, and computer control systems to create new and improved automated manufacturing production systems. This program is designed for people who are interested in plant maintenance (troubleshooting & repair), process set up, installation, and commissioning.

Electromechanical Systems move beyond simply cross-training employees, as the discipline recognizes that individuals need to be trained in five areas: mechanical, electrical, fluid power, process control, and industrial programming.

Students/electricians that previously acquired a diploma/AAS degree in the study of electricity may transfer in credits toward the Electromechanical Systems diploma. Students should have an interest and aptitude in applied algebra, trigonometry, drawing and science. Good eyesight and color vision are important.

Career Opportunities
The Electromechanical Systems program prepares students for careers requiring specialized skills in electricity, electronics, instrumentation, programmable logic controllers, microprocessors, automation and robotics. Students will become multi-skilled technicians capable of solving the many complex problems of manufacturing automation. Students will be prepared for a wide variety of careers including: Instrument Technician, Electrical Technician, Electromechanical Technician, Robotics Technician, Electronics Mechanic, Machine Repair & Maintenance, Motor Installer, Instrumentation Calibration Technician, Industrial Programmer, PLC Programmer, and Field Service.

These jobs are found in a wide range of fields including: oil refineries, water treatment, wastewater treatment, manufacturing plants, chemical, medical, electronics, agriculture, biotechnology and automotive industries.

Program Outcomes
1. Graduates will have the ability to communicate and conduct themselves in a professional manner with the customers and co-workers.
2. Graduates will be able to work on various styles of drives and pumps.
3. Graduates will be able to program using specialized industrial languages.
4. Graduates will have an understanding of machine logic and how electric, pneumatic, and hydraulic circuits interact with it.
5. Graduates will be able to work with various process controls systems.

Program Faculty
Travis Schachtner
travis.schachtner@saintpaul.edu
651.403.4163

Program Delivery
Class work for this program consists of online course delivery with hands-on labs to reinforce that lessons learned as well as one-on-one with instructors.

Additional Program Requirements/Costs
Students must attend orientation.
• Textbooks are required the first day of class. Go to saintpaulcollegebookstore.com for textbook information.
• Students are responsible for having their own Personal Protective Equipment (PPE) to participate in the labs.

Program Requirements
☐ Check off when completed
Certain classes must be taken concurrently and certain classes are prerequisites to other classes.
Course Cr
☐ EMEC 1511 AC/DC Fundamentals 4
☐ EMEC 1521 Electrical Motors 4
☐ EMEC 1530 Motor Controls 4
☐ EMEC 1540 Motor Motors 4
☐ EMEC 2400 Industrial Basics 4
☐ EMEC 2500 Fluid System Fundamentals 4
☐ EMEC 2620 Mechanical Fundamentals 1 4
☐ EMEC 2625 Mechanical Fundamentals 2 4
☐ EMEC 2741 Electromechanical Troubleshooting & Maintenance 4
☐ EMEC 2751 Automated Process Control 4
☐ EMEC 2760 Programming for Robotic Manufacturing 4
☐ EMEC 2770 Advanced PLC Programming 4
Total Program Credits 48

Program Start Dates
Fall, Spring

Course Sequence
This course sequence is recommended for a full-time student; however, this sequence is not required. Students should consult with the Program Advisor each semester.

Not all courses are offered each semester.

First Semester
EMEC 1511 AC/DC Fundamentals 4
EMEC 1521 Electrical Motors 4
EMEC 1530 Motor Controls 4
EMEC 1540 Motor Motors 4
Total Semester Credits 16

Second Semester
EMEC 2400 Industrial Basics 4
EMEC 2500 Fluid System Fundamentals 4
EMEC 2620 Mechanical Fundamentals 1 4
EMEC 2625 Mechanical Fundamentals 2 4
Total Semester Credits 16

Third Semester
EMEC 2741 Electromechanical Troubleshooting & Maintenance 4
EMEC 2751 Automated Process Control 4
EMEC 2760 Programming for Robotic Manufacturing 4
EMEC 2770 Advanced PLC Programming 4
Total Semester Credits 16

Total Program Credits 48

Minimum Program Entry Requirements
Students entering this program must meet the following minimum program entry requirements:

Reading: Score of 240+ or grade of “C” or better in READ 0721 or READ 0724 or EAPP 0860
Writing: Score of 240+ or grade of “C” or better in ENGL 0921 or EAPP 0870
Arithmetic: Score of 237+ or grade of “C” or better in MATH 0745

Assessment Results and Prerequisites:
Students admitted into Saint Paul College programs may need to complete additional courses based on assessment results and course prerequisite requirements. Certain MATH, READ, and ENGL courses have additional prerequisites.

Information is subject to change.
This Program Requirements Guide is not a contract.
Electromechanical Systems: Electrical CERTIFICATE

Program Overview

Electromechanical systems, also referred to as mechatronics, is a new and rapidly growing field that integrates electronics, mechanics, pneumatics, hydraulics, and computer control systems to create new and improved automated manufacturing production systems. This program is designed for people who are interested in plant maintenance (troubleshooting & repair), process set up, installation, and commissioning.

Electromechanical Systems move beyond simply cross-training employees, as the discipline recognizes that individuals need to be trained in five areas: mechanical, electrical, fluid power, process control, and industrial programming.

The Electromechanical Systems Certificate program requires a high school diploma or equivalent. Students/electricians that previously acquired a diploma/AAS degree in the study of electricity may transfer in credits toward the Electromechanical certificate. Students should have an interest and aptitude in applied algebra, trigonometry, drawing and science. Good eyesight and color vision are important.

Career Opportunities

The Electromechanical Systems program prepares students for careers requiring specialized skills in electricity, electronics, instrumentation, programmable logic controllers, microprocessors, automation and robotics. Students will become multi-skilled technicians capable of solving the many complex problems of manufacturing automation. Students will be prepared for a wide variety of careers including: Instrument Technician. Electrical Technician, Electromechanical Technician, Robotics Technician, Electronics Mechanic, Machine Repair & Maintenance, Motor Installer, Instrumentation Calibration Technician, Industrial Programmer, PLC Programmer, and Field Service.

These jobs are found in a wide range of fields including: electrical utilities, oil refineries, water treatment, wastewater treatment, manufacturing plants, chemical, medical, electronics, agriculture, biotechnology and automotive industries.

Program Outcomes

1. Graduates will have the ability to communicate and conduct themselves in a professional manner with the customers and co-workers.
2. Graduates will be able to work on various styles of drives and pumps.
3. Graduates will be able be program using specialized industrial languages.
4. Graduates will have an understanding of machine logic and how electric, pneumatic, and hydraulic circuits interact with it.
5. Graduates will be able to work with various process controls systems.

Program Requirements

☐ Check off when completed
Certain classes must be taken concurrently and certain classes are prerequisites to other classes.

<table>
<thead>
<tr>
<th>Course</th>
<th>Cr</th>
</tr>
</thead>
<tbody>
<tr>
<td>EMEC 1511 AC/DC Fundamentals</td>
<td>4</td>
</tr>
<tr>
<td>EMEC 1521 Electrical Motors</td>
<td>4</td>
</tr>
<tr>
<td>EMEC 1530 Motor Controls</td>
<td>4</td>
</tr>
<tr>
<td>EMEC 1540 Motor Drives</td>
<td>4</td>
</tr>
</tbody>
</table>

Total Program Credits 16

Minimum Program Entry Requirements

Students entering this program must meet the following minimum program entry requirements:

Reading: Score of 240+ or grade of “C” or better in READ 0721 or READ 0724 or EAPP 0860

Writing: Score of 240+ or grade of “C” or better in ENGL 0921 or EAPP 0870

Arithmetic: Score of 237+

Assessment Results and Prerequisites:

Students admitted into Saint Paul College programs may need to complete additional courses based on assessment results and course prerequisite requirements. Certain MATH, READ, and ENGL courses have additional prerequisites.

This Program Requirements Guide is not a contract.
Program Requirements Guide 2021-2022

Electromechanical Systems: Mechanical CERTIFICATE

Program Overview
Electromechanical systems, also referred to as mechatronics, is a new and rapidly growing field that integrates electronics, mechanics, pneumatics, hydraulics, and computer control systems to create new and improved automated manufacturing production systems. This program is designed for people who are interested in plant maintenance (troubleshooting & repair), process set up, installation, and commissioning.

Electromechanical Systems move beyond simply cross-training employees, as the discipline recognizes that individuals need to be trained in five areas: mechanical, electrical, fluid power, process control, and industrial programming.

The Electromechanical Systems Certificate program requires high school graduation or equivalent. Students/electricians that previously acquired a diploma/AAS degree in the study of electricity may transfer in credits toward the Electromechanical certificate. Students should have an interest and aptitude in applied algebra, trigonometry, drawing and science. Good eyesight and color vision are important.

Career Opportunities
The Electromechanical Systems program prepares students for careers requiring specialized skills in electricity, electronics, instrumentation, programmable logic controllers, microprocessors, automation and robotics. Students will become multi-skilled technicians capable of solving the many complex problems of manufacturing automation. Students will be prepared for a wide variety of careers including: Instrument Technician, Electrical Technician, Electromechanical Technician, Robotics Technician, Electronics Mechanic, Machine Repair & Maintenance, Motor Installer, Instrumentation Calibration Technician, Industrial Programmer, PLC Programmer, and Field Service.

These jobs are found in a wide range of fields including: electrical utilities, oil refineries, water treatment, wastewater treatment, manufacturing plants, chemical, medical, electronics, agriculture, biotechnology and automotive industries.

Program Outcomes
1. Graduates will have the ability to communicate and conduct themselves in a professional manner with the customers and co-workers.
2. Graduates will be able to work on various styles of drives and pumps.
3. Graduates will be able to program using specialized industrial languages.
4. Graduates will have an understanding of machine logic and how electric, pneumatic, and hydraulic circuits interact with it.
5. Graduates will be able to work with various process controls systems.

Program Requirements
☐ Check off when completed
Certain classes must be taken concurrently and certain classes are prerequisites to other classes.

<table>
<thead>
<tr>
<th>Course</th>
<th>Cr</th>
</tr>
</thead>
<tbody>
<tr>
<td>EMEC 2400 Industrial Basics</td>
<td>4</td>
</tr>
<tr>
<td>EMEC 2500 Fluid System Fundamentals</td>
<td>4</td>
</tr>
<tr>
<td>EMEC 2620 Mechanical Fundamentals 1</td>
<td>4</td>
</tr>
<tr>
<td>EMEC 2625 Mechanical Fundamentals 2</td>
<td>4</td>
</tr>
</tbody>
</table>

Total Program Credits 16

Program Faculty
Travis Schachtner
travis.schachtner@saintpaul.edu
651.403.4163

Program Start Dates
Spring
Class work for this program consist of online course delivery with hands-on labs to reinforce that lessons learned as well as one-on-one with instructors.

Additional Program Materials Costs
- Students must attend orientation.
- Textbooks are required the first day of class. Go to www.saintpaulcollegebookstore.com for textbook information.
- Students are responsible for having their own Personal Protective Equipment (PPE) to participate in the labs.

Minimum Program Entry Requirements
Students entering this program must meet the following minimum program entry requirements:

Reading: Score of 240+ or grade of “C” or better in READ 0721 or READ 0724 or EAPP 0860

Writing: Score of 240+ or grade of “C” or better in ENGL 0921 or EAPP 0870

Arithmetic: Score of 237+ or grade of “C” or better in MATH 0745

Assessment Results and Prerequisites:
Students admitted into Saint Paul College programs may need to complete additional courses based on assessment results and course prerequisite requirements. Certain MATH, READ, and ENGL courses have additional prerequisites.

Information is subject to change.
This Program Requirements Guide is not a contract.
Program Requirements Guide 2021-2022

Electromechanical Systems: Industrial Programming CERTIFICATE

Program Overview
Electromechanical systems, also referred to as mechatronics, is a new and rapidly growing field that integrates electronics, mechanics, pneumatics, hydraulics, and computer control systems to create new and improved automated manufacturing production systems. This program is designed for people who are interested in plant maintenance (troubleshooting & repair), process set up, installation, and commissioning.

Electromechanical Systems move beyond simply cross-training employees, as the discipline recognizes that individuals need to be trained in five areas: mechanical, electrical, fluid power, process control, and industrial programming.

The Electromechanical Systems Certificate program requires high school graduation or equivalent. Students/electricians that previously acquired a diploma/AAS degree in the study of electricity may transfer in credits toward the Electromechanical certificate. Students should have an interest and aptitude in applied algebra, trigonometry, drawing and science. Good eyesight and color vision are important.

Career Opportunities
The Electromechanical Systems program prepares students for careers requiring specialized skills in electricity, electronics, instrumentation, programmable logic controllers, microprocessors, automation and robotics. Students will become multi-skilled technicians capable of solving the many complex problems of manufacturing automation. Students will be prepared for a wide variety of careers including: Instrument Technician, Electrical Technician, Electromechanical Technician, Robotics Technician, Electronics Mechanic, Machine Repair & Maintenance, Motor Installer, Instrumentation Calibration Technician, Industrial Programmer, PLC Programmer, and Field Service.

These jobs are found in a wide range of fields including: electrical utilities, oil refineries, water treatment, wastewater treatment, manufacturing plants, chemical, medical, electronics, agriculture, biotechnology and automotive industries.

Program Outcomes
1. Graduates will have the ability to communicate and conduct themselves in a professional manner with the customers and co-workers.
2. Graduates will be able to work on various styles of drives and pumps.
3. Graduates will be able be program using specialized industrial languages.
4. Graduates will have an understanding of machine logic and how electric, pneumatic, and hydraulic circuits interact with it.
5. Graduates will be able to work with various process controls systems.

Program Requirements
- Check off when completed
- Certain classes must be taken concurrently and certain classes are prerequisites to other classes.

<table>
<thead>
<tr>
<th>Course</th>
<th>Cr</th>
</tr>
</thead>
<tbody>
<tr>
<td>EMEC 2741 Electromechanical Troubleshooting & Maintenance</td>
<td>4</td>
</tr>
<tr>
<td>EMEC 2751 Automated Process Control</td>
<td>4</td>
</tr>
<tr>
<td>EMEC 2760 Programming for Robotic Manufacturing</td>
<td>4</td>
</tr>
<tr>
<td>EMEC 2770 Advanced PLC Programming</td>
<td>4</td>
</tr>
</tbody>
</table>

Total Program Credits: 16

Program Faculty
Travis Schachtner
travis.schachtner@saintpaul.edu
651.403.4163

Program Start Dates
Fall, Spring

Class work for this program consist of online course delivery with hands-on labs to reinforce that lessons learned as well as one-on-one with instructors.

Additional Program Materials Costs
- Students must attend orientation.
- Textbooks are required the first day of class. Go to www.saintpaulcollegebookstore.com for textbook information.
- Students are responsible for having their own Personal Protective Equipment (PPE) to participate in the labs.

Minimum Program Entry Requirements
Students entering this program must meet the following minimum program entry requirements:

- **Reading:** Score of 240+ or grade of “C” or better in READ 0721 or READ 0724 or EAPP 0860
- **Writing:** Score of 240+ or grade of “C” or better in ENGL 0921 or EAPP 0870
- **Arithmetic:** Score of 237+ or grade of “C” or better in MATH 0745

Assessment Results and Prerequisites:
Students admitted into Saint Paul College programs may need to complete additional courses based on assessment results and course prerequisite requirements. Certain MATH, READ, and ENGL courses have additional prerequisites.

Information is subject to change. This Program Requirements Guide is not a contract.
394C
Program Overview
Pipefitters install, maintain, and repair high and low pressure steam systems, high and low pressure hot water systems, snow melting systems, refrigeration systems, heating, gas and oil piping, pneumatic, electronic controls, air conditioning and also provide instrumentation and valve repair. These skills are used working in residential, commercial, and industrial installations. These systems are installed in all types of weather conditions.

Applicants must be high school graduates or the equivalent and should enjoy working in a demanding trade that requires both mental alertness and physical stamina. Pipefitters do heavy lifting and are required to work both indoors and outside, often times in confined spaces.

Career Opportunities
Pipefitters, Steamfitters, and HVACR Technicians work in all aspects of the heating, air conditioning, refrigeration, and temperature control fields. They are also employed at oil refineries, chemical plants, food processing facilities, manufacturing plants, retail and food store, and ice rinks. Maintenance pipefitters work in a variety of environments such as universities, schools, government agencies and utility companies.

Program Outcomes
1. Apply math and science skills to designing and operating process piping systems.
2. Install, maintain, and repair heating and cooling systems under supervision of a licensed pipefitter.
3. Install and repair process piping systems under supervision of a licensed pipefitter.

Program Faculty
Wyatt Carlson
wyatt.carlson@saintpaul.edu

Student supplies and tools costs
- Text rental $100.00
- PPE-Tools estimated at $150.00

All classes must be completed with a grade of "C" or better.

Program Requirements
☐ Check off when completed

<table>
<thead>
<tr>
<th>Course</th>
<th>Cr</th>
</tr>
</thead>
<tbody>
<tr>
<td>PIPE 1410 Pipe Science/Math</td>
<td>5</td>
</tr>
<tr>
<td>PIPE 1451 Pipe Shop 1</td>
<td>4</td>
</tr>
<tr>
<td>PIPE 1452 Pipe Shop 2</td>
<td>4</td>
</tr>
<tr>
<td>PIPE 1540 Electric Controls</td>
<td>3</td>
</tr>
<tr>
<td>PIPE 1550 Basic Gas</td>
<td>3</td>
</tr>
<tr>
<td>PIPE 1555 Basic Electricity</td>
<td>2</td>
</tr>
<tr>
<td>PIPE 1560 Basic Refrigeration</td>
<td>4</td>
</tr>
<tr>
<td>PIPE 1565 Heating and Cooling 1</td>
<td>4</td>
</tr>
<tr>
<td>PIPE 1570 Heating and Cooling 2</td>
<td>4</td>
</tr>
<tr>
<td>PIPE 1575 Pipe Blueprint Reading</td>
<td>2</td>
</tr>
<tr>
<td>PIPE 1580 Pipe Welding 1</td>
<td>3</td>
</tr>
<tr>
<td>PIPE 1585 Pipe Welding 2</td>
<td>2</td>
</tr>
</tbody>
</table>

Total Program Credits 40

Restricted Enrollment
The Pipefitting Diploma is a restricted enrollment joint program offered through the St. Paul Pipefitters Local 455 and Saint Paul College. Admission to the Pipefitters Apprenticeship program is required for enrollment in this program.

Contact Wyatt Carlson at wyatt.carlson@saintpaul.edu for application information.

Minimum Program Entry Requirements
Students entering this program must meet the following minimum program entry requirements:

- **Reading:** Score of 261+
- **Arithmetic:** Score of 250+
- **Spatial assessment required:** Score 70+

Assessment Results and Prerequisites:
Students must maintain a GPA of 2.5 to continue in the program.

Students are accepted through St. Paul Pipefitters Local 455 JAC; 651.846.1699 or www.local455jac.com.
Program Overview
The Plumbing program trains apprentices in commercial, residential and industrial plumbing.

Plumbers install and maintain the water, waste disposal, soil and vent, drainage and gas systems in homes and in commercial and industrial buildings. Plumbers also install faucets, bathtubs, sinks and toilets, and such appliances as dishwashers and water heaters. Plumbers often work from blueprints and specifications and are knowledgeable about building and plumbing codes which govern installations.

Applicants must be high school graduates or equivalent. High school courses in mathematics, science, mechanical drawing and wood or metal shop will be helpful.

Career Opportunities
According to the U.S. Department of Labor, employment of plumbers is expected to grow as fast as the average for all occupations.

Before becoming a journeyperson plumber, the apprentice must pass the Minnesota State Plumbing Examination. Licensing is by the State Board of Health.

Program Outcomes
1. Apply math and science skills in the plumbing field.
2. Apply code knowledge to install piping in commercial, residential, and industrial buildings.
3. Assemble fittings, fixtures, and piping used in multiple piping systems.

Program Faculty
Adjunct faculty members, who are experienced in plumbing and represent private practice, local government, and industry sectors.

Program Requirements
☐ Check off when completed
Certain classes must be taken concurrently and certain classes are prerequisites to other classes.

Course	Cr
PLMB 2610 Pre-Apprentice Plumbing | 2
PLMB 2612 Job Safety & Health | 2
PLMB 2614 Applied Math for Plumbing | 4
PLMB 2616 Plumbing Welding | 4
PLMB 2618 Basic Drawing | 4
PLMB 2621 Plumbing 1 | 4
PLMB 2622 Plumbing 2 | 4
PLMB 2623 Plumbing 3 Gas Installations and Gas Controls | 4
PLMB 2624 Advanced Plan Reading and Heavy Rigging | 4
PLMB 2631 Plumbing Code 1 | 2
PLMB 2632 Plumbing Code 2 | 2
PLMB 2633 Plumbing Code 3 | 2
PLMB 2634 Plumbing Code 4 | 2

Total Program Credits | 44

Program Start Dates
The Plumbing Diploma program is a part-time, evening program that starts each spring.

Call Rick Gale, Program Coordinator, St. Paul Plumbers JATC, at 651.846.1389 for questions about the program.

Contact the One Stop at 651.846.1555 or admissions@saintpaul.edu for questions about the application, deadlines and the enrollment process.

Minimum Program Entry Requirements
Students entering this program must meet the following minimum program entry requirements:
Reading: Score of 248+
Writing: Any
Arithmetic: Score of 250+
Spatial assessment required: Score 50+

Assessment Results and Prerequisites:
Students admitted into Saint Paul College programs may need to complete additional courses based on assessment results and course prerequisite requirements. Certain MATH, READ, and ENGL courses have additional prerequisites.

Information is subject to change. This Program Requirements Guide is not a contract.

Restricted Enrollment
The Plumbing Diploma program is a restricted enrollment program offered through the Plumbers and Gasfitters Local 34 and Saint Paul College. Admission to the Plumbing Apprenticeship program is required for enrollment in this diploma program. Those enrolled in the Plumbing Diploma program are subject to the St. Paul Plumbers & Gasfitters Apprenticeship Standards, as well as the Saint Paul College Student Code of Conduct and Academic Integrity Policy. Violations of these standards or policies may result in removal from both the apprenticeship program and the plumbing diploma classes. Concurrent enrollment in both the apprenticeship program and plumbing classes is required.

Contact Rick Gale at 651.846.1389 for application information.

Course Sequence
Spring Semester
Students must complete the Pre-Apprenticeship classes (PLMB 2610 and PLMB 2612) prior to work eligibility.
PLMB 2610 Pre-Apprentice Plumbing | 2
PLMB 2612 Job Safety and Health | 2
1st Year Apprentice
PLMB 2614 Applied Math for Plumbers | 4
2nd Year Apprentice
PLMB 2622 Plumbing 2 | 4
3rd Year Apprentice
PLMB 2624 Plumbing 4 Commercial and Residential Service | 4
4th year Apprentice
PLMB 2640 Advanced Plan Reading and Heavy Rigging | 4
5th Year Apprentice
PLMB 2633 Plumbing Code 3 | 2
PLMB 2634 Plumbing Code 4 | 2

Fall Semester
1st Year Apprentice
PLMB 2621 Plumbing 1 | 4
2nd Year Apprentice
PLMB 2616 Plumbing Welding | 4
3rd year Apprentice
PLMB 2623 Plumbing 3 Gas Installations and Gas Controls | 4
4th Year Apprentice
PLMB 2618 Basic Drawing | 4
5th Year Apprentice
PLMB 2631 Plumbing Code 1 | 2
PLMB 2632 Plumbing Code 2 | 2
Total Program Credits | 44
Sheet Metal-HVAC Ducts and Fittings AAS DEGREE

Program Overview
The sheet metal worker reads blueprints, prepares layouts and operates fabricating devices such as special hand tools, power shears, nibbler, brake, bar folder, turning machines, spot and arc welders, soldering equipment and plasma cutting systems. The skilled sheet metal worker gathers general information and specifications from blueprints for the fabrication and installation of ducts for heating, cooling, filtering and humidifying air. Also, sheet metal workers fabricate and install metal roofing and siding, stainless steel equipment for homes and industry, chutes for material transfer, signs and rain dispersal equipment. Satisfactory preparation for the sheet metal program may include high school courses in algebra and geometry. Other helpful courses are mechanical drafting and metal shop. Much of the sheet metal work starts with two-dimensional objects and ends with a three-dimensional product. Sheet metal work requires good spatial perception.

Career Opportunities
According to the U.S. Department of Labor, employment of sheet metal workers in construction is expected to increase about as fast as the average for all occupations. Graduates may go to work for firms that fabricate sheet metal products and become skilled production, precision, or construction sheet metal workers.

Program Outcomes
1. Graduates will have the knowledge and skills to layout, fabricate, and assemble all types of sheet metal products.
2. Graduates will have the ability to safely operate all types of sheet metal fabricating equipment.
3. Graduates will have the knowledge and skills to complete sheet metal welding and soldering processes.
4. Graduates will have the knowledge and skills to use computer-aided drafting for the design and fabrication of sheet metal products.
5. Graduates will have the knowledge and skills to use drafting and blueprint reading to design HVAC duct systems.

Transfer Opportunities
Saint Paul College has a transfer articulation agreement between the following program and post-secondary institutions for the baccalaureate degree programs listed below. For more information please go to saintpaul.edu/transfer.

Program Faculty
Viangsavanh Paborriboon
viangsavanh.paborriboon@saintpaul.edu
651.846.1367

Program Requirements
- **Check off when completed**
 - Special supplies, tools, and estimated costs

The list for required tools is supplied by the program advisor. The cost of tools for the program is approximately $300. Contact program faculty for more information.

Course Requirements

<table>
<thead>
<tr>
<th>Course</th>
<th>Cr</th>
</tr>
</thead>
<tbody>
<tr>
<td>SMET 1410 Sheet Metal Fitting Layout and Design</td>
<td>4</td>
</tr>
<tr>
<td>SMET 1415 OSHA 30 HR Training</td>
<td>2</td>
</tr>
<tr>
<td>SMET 1420 Sheet Metal Fitting Fabrication</td>
<td>4</td>
</tr>
<tr>
<td>SMET 1430 Sheet Metal Drafting & Blueprint Reading</td>
<td>2</td>
</tr>
<tr>
<td>SMET 1440 Sheet Metal Welding</td>
<td>5</td>
</tr>
<tr>
<td>SMET 1450 Sheet Metal Practical Problem Solving</td>
<td>2</td>
</tr>
<tr>
<td>SMET 1510 Duct System Layout & Design</td>
<td>4</td>
</tr>
<tr>
<td>SMET 1520 Duct System Fabrication</td>
<td>4</td>
</tr>
<tr>
<td>SMET 1530 Architectural Sheet Metal</td>
<td>4</td>
</tr>
<tr>
<td>SMET 1540 Power Machine Operation</td>
<td>3</td>
</tr>
<tr>
<td>SMET 1550 Sheet Metal CAD/CAM Systems</td>
<td>3</td>
</tr>
<tr>
<td>Subtotal.</td>
<td>37</td>
</tr>
</tbody>
</table>

General Education/MnTC Requirements
Refer to the Minnesota Transfer Curriculum Course List for each Goal Area

Goal 1: Communication	7
ENGL 1711 Composition	Cr
COMM 17XX – 3 cr	
Goal 3 or Goal 4	6
Goal 3: Natural Sciences OR	
Goal 4: Mathematical/Logical Reasoning	
Goal 5: History, Social Science and Behavioral Sciences	3
Goal 6: Humanities and Fine Arts	3
Select a minimum of 4 additional credits	
Goals 1 – 10 of the Minnesota Transfer Curriculum	4
Select a minimum of 4 additional credits	

Minimum Program Entry Requirements

Students entering this program must meet the following minimum program entry requirements:

- **Reading:** Score of 240+ or grade of “C” or better in READ 0721 or READ 0724 or EAPP 0860
- **Writing:** Score of 240+ or grade of “C” or better in ENGL 0921 or EAPP 0870
- **Arithmetic:** Score of 237+
- **Spatial assessment required:** Score 50+

Assessment Results and Prerequisites:

Students admitted into Saint Paul College programs may need to complete additional courses based on assessment results and course prerequisite requirements. Certain MATH, READ, and ENGL courses have additional prerequisites.

Program Start Dates

- **Fall**
- **Full-time enrollment is required**

Students must be enrolled full-time with a cohort of students. Technical courses only offered during days.

Course Sequence

The following sequence is recommended.

First Semester

SMET 1410 Sheet Metal Fitting Layout and Design	4
SMET 1415 OSHA 30 HR Training	2
SMET 1420 Sheet Metal Fitting Fabrication	4
SMET 1430 Sheet Metal Drafting & Blueprint Reading	2
SMET 1440 Sheet Metal Welding	5
SMET 1450 Sheet Metal Practical Problem Solving	2
Goal 1: COMM 17XX	3
Total Semester Credits.	**22**

Second Semester

SMET 1510 Duct System Layout & Design	4
SMET 1520 Duct System Fabrication	4
SMET 1530 Architectural Sheet Metal	4
SMET 1540 Power Machine Operation	3
SMET 1550 Sheet Metal CAD/CAM Systems	3
Total Semester Credits.	**18**

Total Program Credits.

| 60 |

Information is subject to change.

This Program Requirements Guide is not a contract.

Program Requirements Guide 2021-2022

Sheet Metal-HVAC Ducts and Fittings

Program Overview

The sheet metal worker reads blueprints, prepares layouts and operates fabricating devices such as special hand tools, power shears, nibbler, brake, bar folder, turning machines, spot and arc welders, soldering equipment and plasma cutting systems. The skilled sheet metal worker gathers general information and specifications from blueprints for the fabrication and installation of ducts for heating, cooling, filtering and humidifying air. Also, sheet metal workers fabricate and install metal roofing and siding, stainless steel equipment for homes and industry, chutes for material transfer, signs and rain dispersal equipment. Satisfactory preparation for the sheet metal program may include high school courses in algebra and geometry. Other helpful courses are mechanical drafting and metal shop. Much of the sheet metal work starts with two-dimensional objects and ends with a three-dimensional product. Sheet metal work requires good spatial perception.

Career Opportunities

According to the U.S. Department of Labor, employment of sheet metal workers in construction is expected to increase about as fast as the average for all occupations. Graduates may go to work for firms that fabricate sheet metal products and become skilled production, precision, or construction sheet metal workers.

Program Outcomes

1. Graduates will have the knowledge and skills to layout, fabricate, and assemble all types of sheet metal products.
2. Graduates will have the ability to safely operate all types of sheet metal fabricating equipment.
3. Graduates will have the knowledge and skills to complete sheet metal welding and soldering processes.
4. Graduates will have the knowledge and skills to use computer-aided drafting for the design and fabrication of sheet metal products.
5. Graduates will have the knowledge and skills to use drafting and blueprint reading to design HVAC duct systems.

Transfer Opportunities

Saint Paul College has a transfer articulation agreement between the following program and post-secondary institutions for the baccalaureate degree programs listed below. For more information please go to saintpaul.edu/transfer.

Sheet Metal/HVAC Ducts & Fittings AAS

BA Individualized Studies

Metropolitan State University
Program Overview
The sheet metal worker reads blueprints, prepares layouts, and operates fabricating devices such as special hand tools, power shears, nibbler, brake, bar folder, turning machines, spot and arc welders, soldering equipment, and plasma cutting systems. The skilled sheet metal worker gathers general information and specifications from blueprints for the fabrication and installation of ducts for heating, cooling, filtering, and humidifying air. Also, sheet metal workers fabricate and install metal roofing and siding, stainless steel equipment for homes and industry, chutes for material transfer, signs, and rain dispersal equipment.

Satisfactory preparation for the sheet metal program may include high school courses in algebra and geometry. Other helpful courses are mechanical drafting and metal shop. Much of the sheet metal work starts with two-dimensional objects and ends with a three-dimensional product. Sheet metal work requires good spatial perception.

Career Opportunities
According to the U.S. Department of Labor, employment of sheet metal workers in construction is expected to increase as fast as the average for all occupations. Graduates may go to work for firms that fabricate sheet metal products and become skilled production, precision, or construction sheet metal workers.

Program Outcomes
1. Graduates will have the knowledge and skills to layout, fabricate, and assemble all types of sheet metal products.
2. Graduates will have the ability to safely operate all types of sheet metal fabricating equipment.
3. Graduates will have the knowledge and skills to complete sheet metal welding and soldering processes.
4. Graduates will have the knowledge and skills to use computer-aided drafting for the design and fabrication of sheet metal products.
5. Graduates will have the knowledge and skills to use drafting and blueprint reading to design HVAC duct systems.

Program Faculty
Viangsavanh Paborriboon
viangsavanh.paborriboon@saintpaul.edu
651.846.1367

Special supplies, tools, and estimated costs
The list for required tools is supplied by the program advisor. The cost of tools for the program is approximately $300. Contact program faculty for more information.

Program Requirements
☐ Check off when completed

Course Cr
☐ SMET 1410 Sheet Metal Fitting Layout and Design 4
☐ SMET 1415 OSHA 30 HR Training ... 2
☐ SMET 1420 Sheet Metal Fitting Fabrication 4
☐ SMET 1430 Sheet Metal Drafting & Blueprint Reading 2
☐ SMET 1440 Sheet Metal Welding .. 5
☐ SMET 1450 Sheet Metal Practical Problem Solving 2
☐ SMET 1510 Duct System Layout & Design 4
☐ SMET 1520 Duct System Fabrication 4
☐ SMET 1530 Architectural Sheet Metal 4
☐ SMET 1540 Power Machine Operation 3
☐ SMET 1550 Sheet Metal CAD/CAM Systems 3

Subtotal ... 37

General Education/MnTC Requirements Cr
Refer to the Minnesota Transfer Curriculum Course List for each Goal Area
☐ Goal 1: Communication ... 3
COMM 17XX – 3 cr
General Education Requirements 3

Total Program Credits ... 40

Minimum Program Entry Requirements
Students entering this program must meet the following minimum program entry requirements:

Reading: Score of 240+ or grade of “C” or better in READ 0721 or READ 0724 or EAPP 0860

Writing: Score of 225+

Arithmetic: Score of 237+

Spatial assessment required: Score 50+

Assessment Results and Prerequisites:
Students admitted into Saint Paul College programs may need to complete additional courses based on assessment results and course prerequisite requirements. Certain MATH, READ, and ENGL courses have additional prerequisites.

Program Start Dates
Fall

Full-time enrollment is required
Students must be enrolled full-time with a cohort of students. Technical courses only offered during days.

Course Sequence
The following sequence is recommended.

First Semester
SMET 1410 Sheet Metal Fitting Layout and Design 4
SMET 1415 OSHA 30 HR Training 2
SMET 1420 Sheet Metal Fitting Fabrication 4
SMET 1430 Sheet Metal Drafting & Blueprint Reading 2
SMET 1440 Sheet Metal Welding 5
SMET 1450 Sheet Metal Practical Problem Solving 2
Goal 1: COMM 17XX ... 3
Total Semester Credits .. 22

Second Semester
SMET 1510 Duct System Layout & Design 4
SMET 1520 Duct System Fabrication 4
SMET 1530 Architectural Sheet Metal 4
SMET 1540 Power Machine Operation 3
SMET 1550 Sheet Metal CAD/CAM Systems 3
Total Semester Credits .. 18

Total Program Credits .. 40

Information is subject to change.
This Program Requirements Guide is not a contract.
Program Overview
Truck Technicians diagnose trouble accurately with the use of modern testing equipment. They repair and service the entire truck and trailer including gas and diesel engines. They also work on air brakes, multi-speed transmissions, differentials, electrical systems, chassis and engine electronics, cooling systems, air conditioning and refrigeration, and many more components of today's modern truck.

Career Opportunities
Maintenance departments, which have the responsibility for the repair and the maintenance of the entire truck, need skilled graduates to fill truck technician positions. Many technicians find employment with companies that own a fleet of vehicles such as truck lines, bus lines, and construction companies. Other technicians work for small repair shops, truck dealerships, heavy equipment dealers and the government. Employment of truck technicians is expected to increase faster than average according to the U.S. Department of Labor.

Program Outcomes
1. Graduates will diagnose problems that occur in all major truck systems.
2. Graduates will service and repair medium/heavy duty trucks and trailers.
3. Graduates will communicate effectively with customers, supervisors, colleagues, and industry professionals.
4. Graduates will attend seminars and technical institutes.

Additional Requirements/Recommendations
The student should be capable of passing a rigorous physical examination with emphasis on eyesight, color vision, hearing, back condition and motor coordination.

Program Faculty
Joel Pearson
joel.pearson@saintpaul.edu
651.846.1795

Textbook and supply costs
The following are estimated costs:

- Textbooks: $450
- Tools: $1,000–$2,000 depending on brand of tools purchased.

Program Requirements
- Check off when completed

Program Start Dates
- Fall

Full-time enrollment is required
This is a two-year, full-time day program.

- Introduction and Safety must be taken concurrently with the other truck technician classes at the start of the program.
- It is recommended that the general education requirements be taken in the summer term before the first year or between the first and second years.

Course Sequence
The course sequence listed in the back of this guide is recommended for a full-time student; however, this sequence is not required. Contact Program Faculty with questions.

Minimum Program Entry Requirements
Students entering this program must meet the following minimum program entry requirements:

- Reading: Score of 240+ or grade of "C" or better in READ 0721 or READ 0724 or EAPP 0860
- Writing: Score of 225+
- Arithmetic: Score of 237+
- Spatial assessment required: Score 10+

Assessment Results and Prerequisites:
Students admitted into Saint Paul College programs may need to complete additional courses based on assessment results and course prerequisite requirements. Certain MATH, READ, and ENGL courses have additional prerequisites.

Information is subject to change.
This Program Requirements Guide is not a contract.
Course Sequence

This diploma program generally includes four semesters of full-time study. The course sequence will depend upon when a student starts the Truck Technician program. Each of the four required semester blocks is offered once every other year. Students beginning Fall Semester will follow the following sequence outlined.

First Semester
- TRKM 1400 Introduction and Safety 1
- TRKM 1445 Truck Welding 1 2
- TRKM 1521 Electrical 1 5
- TRKM 1522 Electrical 2 5
- TRKM 1552 Driveshafts and Differentials 4
- **Total Semester Credits** 17

Second Semester
- TRKM 1455 Truck Welding 2 2
- TRKM 1551 Clutch and Transmission 5
- TRKM 1553 Automatic and Automated Transmissions 4
- TRKM 1560 Truck Brake Systems 6
- **Total Semester Credits** 17

Third Semester
- TRKM 2401 Steering and Suspension Systems 6
- TRKM 2425 Truck Cab Climate Control Systems 3
- TRKM 2440 Gasoline Engines 6
- **Total Semester Credits** 15

Fourth Semester
- TRKM 2511 Diesel Engines 1 6
- TRKM 2512 Diesel Engines 2 6
- TRKM 2540 Preventive Maintenance 3
- **Total Semester Credits** 15

General Education Requirement (any) 3

May be taken any semester, but Summer Term is recommended.

- **Total Program Credits** 67
Program Overview
Welding and fabrication operations require skilled workers who are well-trained in the use of advanced arc welding process, layout fabrication techniques, blueprint reading and measuring devices. Skilled welding fabricators are thoroughly familiar with both welding and shop equipment, understanding the breakdown and setup procedures, test standards, and knowledge of the various types of metals. Physical requirements include good eyesight, good hand and eye coordination and the ability to perform heavy, physical work.

Career Opportunities
According to the U.S. Department of Labor, it is projected within the next 10 years to see a 15% growth rate, adding 50,000 new jobs. Welders and fabricators work in manufacturing plants both in structural and non-structural settings as production welders, maintenance welders, specialty welders, layout fabricators, press brake operators, CNC plasma/laser cutting operators, and robotic welding operators. Welding fabrication is widely used in the aircraft, automobile, trucking, shipbuilding, pipefitting, plumbing, sheetmetal, ironworking and other trades that use metals. Skilled welders may become layout specialists, engineers, technicians, supervisors, Certified Welding Inspectors or private shop owners.

Program Outcomes
1. Identify correct welding techniques for multiple processes.
2. Follow safety requirements in the set-up, operation, and break down of metal shop equipment.
4. Analyze the quality of welds to determine if proper techniques/settings are being used.
5. Use blueprints and measuring devices to aid in welding.
6. Distinguish between the characteristics of commonly used metal types.
7. Apply mathematical tools to metalworking techniques.
8. Construct projects using metalworking fabrication techniques.

Welding Technology
DIPLOMA

Program Faculty
Todd Hankel
todd.hankel@saint paul.edu
Caleb Paulson
caleb.paulson@saintpaul.edu
Riley Pease
riley.pease@saintpaul.edu

Course Sequence
The following sequence is recommended for a full-time student.

First Semester
- WLDG 1402 Industrial Shop Practices 1 4
- WLDG 1410 Welding Basics 2
- WLDG 1420 SMAW: E6010 2
- WLDG 1431 SMAW: E7018 2
- WLDG 1441 GMAT: Short Arc 3
- WLDG 1450 Intro to Blueprint/Measuring Devices 3
- WLDG 1502 Industrial Shop Practices 4
- WLDG 1510 GTAW: Aluminum 3
- WLDG 1520 Gas Metal Arc Welding 3
- WLDG 1530 Intro to GTAW 3
- WLDG 1540 Blueprint/Measuring Symbols/Math/Welder Qualification 3

Second Semester
- WLDG 1420 SMAW: E6010 2
- WLDG 1510 GTA Spraying and Pulse Spaying 3
- WLDG 1520 GMAT Core Wires 3
- WLDG 1530 Intro to GTA 3
- WLDG 1540 Blueprint/Measuring Symbols/Math/Welder Qualification 3

Third Semester
- WLDG 2402 Industrial Shop Practices 3 4
- WLDG 2411 GMAT: Aluminum and Stainless Steel 3
- WLDG 2420 GTA Spraying and Pulse Spaying 3
- WLDG 2430 Grinding and Finishing 2
- WLDG 2442 Intro to Robotics 3

Total Program Credits 48

Minimum Program Entry Requirements
Students entering this program must meet the following minimum program entry requirements:
- Reading: Score of 240+ or grade of “C” or better in READ 0721 or READ 0724 or EAPP 0860
- Writing: Score of 225+
- Arithmetic: Score of 237+

Assessment Results and Prerequisites:
Students admitted into Saint Paul College programs may need to complete additional courses based on assessment results and course prerequisite requirements. Certain MATH, READ, and ENGL courses have additional prerequisites.

Program Requirements
☐ Check off when completed
Certain classes must be taken concurrently and certain classes are prerequisites to other classes.

Total Program Credits 48

Information is subject to change. This Program Requirements Guide is not a contract.
Program Requirements Guide 2021-2022

Welding Technology CERTIFICATE

Program Overview
Welding is a common method for joining two pieces of metal together. This is a skill that is required throughout manufacturing and the construction trades. Entry level welders are required to be experienced in common welding methods and set-up procedures. Additionally, they will need to read blueprint drawings to create product, use various measuring devices efficiently, and be able to identify various metals that may be welded on.

Physical Requirements include good eyesight, good hand and eye coordination and the ability to perform heavy, physical work.

Career Opportunities
According to the U.S. Department of Labor, it is projected within the next 10 years to see a 15% growth rate, adding 50,000 new jobs.

In manufacturing, welders are needed in Aerospace, Structural, Precision Sheet Metal, Architectural, and many other industries. Welders are also needed in various construction trades: such as Pipefitting, Sheet Metal, Ironworker, and others.

Program Outcomes
1. Identify correct welding techniques for multiple processes.
2. Follow safety requirements in set-up, operation, and break down of metal shop equipment.
4. Analyze the quality of welds to determine if proper techniques/settings are being used.
5. Use blueprints and measuring devices to aid in welding.

Program Faculty
Todd Hankel
todd.hankel@saintpaul.edu
Caleb Paulsoncaleb.paulson@saintpaul.edu
Riley Pease
riley.pease@saintpaul.edu

Program Requirements
☐ Check off when completed
Certain classes must be taken concurrently and certain classes are prerequisites to other classes.

Course Cr
☐ WLDG 1402 Industrial Shop Practices 1 4
☐ WLDG 1410 Welding Basics 2
☐ WLDG 1420 SMAW: E6010 2
☐ WLDG 1431 SMAW: E7018 2
☐ WLDG 1441 GMAW: Short Arc 3
☐ WLDG 1450 Intro to Blueprint/Measuring Devices 3

Total Program Credits 16

Supply costs
Estimated cost for student supplies $250.

Program Start Dates
Fall, Spring

Course Sequence
The following sequence is recommended for a full-time student.

First Semester
WLDG 1402 Industrial Shop Practices 1 4
WLDG 1410 Welding Basics 2
WLDG 1420 SMAW: E6010 2
WLDG 1431 SMAW: E7018 2
WLDG 1441 GMAW: Short Arc 3
WLDG 1450 Intro to Blueprint/Measuring Devices 3
Total Semester Credits 16

Total Program Credits 16

Minimum Program Entry Requirements
Students entering this program must meet the following minimum program entry requirements:

Reading: Score of 240+ or grade of “C” or better in READ 0721 or READ 0724 or EAPP 0860
Writing: Score of 225+
Arithmetic: Score of 237+

Assessment Results and Prerequisites:
Students admitted into Saint Paul College programs may need to complete additional courses based on assessment results and course prerequisite requirements. Certain MATH, READ, and ENGL courses have additional prerequisites.

Information is subject to change. This Program Requirements Guide is not a contract.
Program Requirements Guide 2021-2022

Robotic Welding CERTIFICATE

Program Overview
Professional fabricators and CNC operators are highly skilled individuals who excel in math, geometry, formulations, programming, critical thinking and blueprint reading. Physical requirements include good eyesight, good hand and eye coordination, standing for long periods of time and the ability to perform heavy, physical work.

Robotic welding is an exciting and growing part of the welding profession. Robotic tools can automate some high production applications, such as resistance spot welding and arc welding.

Students must be a graduate of the Welding Technology Diploma (WLDG) or have instructor approval.

Career Opportunities
Fabricators and CNC operators work in manufacturing plants as production welders, specialist welders, layout engineers, press brake and CNC operators both in structural and non-structural settings. Welding/fabricating is widely used in the aircraft, automotive, heavy equipment, sheet metal, and other trades that use fabrication and CNC equipment.

Program Outcomes
1. Graduates will have the knowledge and skills in setup and break-down procedures of CNC equipment including press brake, CNC plasma cutting and robotic welding.
2. Graduates will have knowledge and skills in sheet metal bend deduction formulation.
3. Graduates will have acquired supervised hands-on experience in using various welding and finishing processes and fabrication equipment.
4. Graduates will be prepared for employment in the welding industry and related fabrication fields.

Program Faculty
Todd Hankel
todd.hankel@saintpaul.edu
Caleb Paulsoncaleb.paulson@saintpaul.edu

Supply Costs
Estimated cost for student supplies $520.

Program Requirements
Students must have a Welding Diploma or instructor approval.

Course Cr
☐ WLDG 2500 2D CAD .. 2
☐ WLDG 2510 Safety ... 1
☐ WLDG 2520 CNC Plasma 2
☐ WLDG 2530 Press Brake Operations 3
☐ WLDG 2540 Robotic Welding Operations 3
☐ WLDG 2550 Industrial Equipment 2
☐ WLDG 2560 Layout Practices 4

Total Program Credits 17

Program Start Dates
Spring

Course Sequence
The following sequence is recommended for a full-time student.

First Semester
WLDG 2500 2D CAD .. 2
WLDG 2510 Safety ... 1
WLDG 2520 CNC Plasma 2
WLDG 2530 Press Brake Operations 3
WLDG 2540 Robotic Welding Operations 3
WLDG 2550 Industrial Equipment 2
WLDG 2560 Layout Practices 4

Total Semester Credits 17

Total Program Credits 17

Minimum Program Entry Requirements
Students entering this program must meet the following minimum program entry requirements:

Reading: Score of 240+ or grade of “C” or better in READ 0721 or READ 0724 or EAPP 0860

Writing: Score of 225+

Arithmetic: Score of 237+

Assessment Results and Prerequisites:
Students admitted into Saint Paul College programs may need to complete additional courses based on assessment results and course prerequisite requirements. Certain MATH, READ, and ENGL courses have additional prerequisites.

Information is subject to change.
This Program Requirements Guide is not a contract.

350C
Automation Technologies CERTIFICATE
An eTECH 360° Program

Program Overview
This certificate will provide students with knowledge of manufacturing processes and plant operations, along with an advanced skill set in electronic and automotive systems. Students will engage in coursework topics of technical mathematics, introductory computer skills, print interpretation, manufacturing processes, quality control, maintenance and safety. Also included in coursework is an advanced skill set of AC/DC power, digital electronics, analog circuits, and motor controls.

Career Opportunities
The nationwide Manufacturing Skills Standards Council (MSSC) System, based upon industry-defined and federally-endorsed national standards, offers both entry-level and incumbent workers the opportunity to demonstrate that they have acquired the skills increasingly needed in the high-growth, technology-intensive jobs of the 21st century. The MSSC System awards certificates to individuals who pass any of its four Production modules: Safety; Quality Practices & Measurement; Manufacturing Processes & Production; and Maintenance Awareness and a full Certified Production Technician (CPT) Certification to those who pass all four. Students completing this Certificate will have gained the knowledge required to pass the MSSC full-certified Production Technician Certification.

According to the Manufacturing Career Network, manufacturing is the second largest industry in Minnesota, second only to healthcare and social assistance. Minnesota manufacturers employ 390,435 people, which represents 14.4 percent of total employment. Further, manufacturing jobs in the state pay wages that are approximately 8 percent higher than those paid to the rest of the workforce. These numbers are evidence that a thriving manufacturing sector is critical to the state economy.

Program Outcomes
Graduates will be able to:

1. Identify and apply appropriate safety procedures.
2. Apply knowledge and skills in electrical systems.
3. Use and understand test equipment for analysis.
4. Design, build, and troubleshoot circuits.
5. Analyze and apply specific manufacturing process procedures.
6. Identify and apply specific quality procedures.
7. Interpret symbols and blueprints accurately for a variety of projects.

Program Requirements

<table>
<thead>
<tr>
<th>Course</th>
<th>Cr</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMAE 1502 Technical Math</td>
<td>3</td>
</tr>
<tr>
<td>CMAE 1510 Print Reading</td>
<td>2</td>
</tr>
<tr>
<td>CMAE 1550 DC Power</td>
<td>3</td>
</tr>
<tr>
<td>CMAE 1518 Manufacturing Processes</td>
<td>2</td>
</tr>
<tr>
<td>CMAE 1514 Safety Awareness</td>
<td>2</td>
</tr>
<tr>
<td>CMAE 1552 AC Power</td>
<td>3</td>
</tr>
<tr>
<td>CMAE 1506 Intro to Computers</td>
<td>3</td>
</tr>
<tr>
<td>CMAE 1554 Digital Electronics</td>
<td>3</td>
</tr>
<tr>
<td>CMAE 1556 Analog Circuits</td>
<td>3</td>
</tr>
<tr>
<td>CMAE 1526 Maintenance Awareness</td>
<td>2</td>
</tr>
<tr>
<td>CMAE 1522 Quality Practices</td>
<td>2</td>
</tr>
<tr>
<td>CMAE 1558 Motor Controls</td>
<td>3</td>
</tr>
</tbody>
</table>

Total Program Credits 30

eTECH Programs
The eTECH programs are offered by a group of partner institutions working together integrates traditional classroom learning with partial on-site lab work for the online delivery of courses where learners can advance their skills in manufacturing and engineering, while continuing to work in their current profession. Many courses are available online. The programs are designed to offer entry-level and operator-level skills and knowledge, which prepares them for a career, instead of just an entry-level job. Because eTECH is part of the 360° consortium of two-year colleges and a four-year university, it provides a unique ability to implement seamless career pathways from secondary to two-year college to four-year university.

Program Start Date
Fall, Spring

Course Sequence

<table>
<thead>
<tr>
<th>First Semester</th>
<th>Cr</th>
<th>Second Semester</th>
<th>Cr</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMAE 1502 Technical Math</td>
<td>3</td>
<td>CMAE 1506 Intro to Computers</td>
<td>2</td>
</tr>
<tr>
<td>CMAE 1510 Print Reading</td>
<td>2</td>
<td>CMAE 1554 Digital Electronics</td>
<td>3</td>
</tr>
<tr>
<td>CMAE 1550 DC Power</td>
<td>3</td>
<td>CMAE 1556 Analog Circuits</td>
<td>3</td>
</tr>
<tr>
<td>CMAE 1518 Manufacturing Processes</td>
<td>2</td>
<td>CMAE 1526 Maintenance Awareness</td>
<td>2</td>
</tr>
<tr>
<td>CMAE 1514 Safety Awareness</td>
<td>2</td>
<td>CMAE 1522 Quality Practices</td>
<td>2</td>
</tr>
<tr>
<td>CMAE 1552 AC Power</td>
<td>3</td>
<td>CMAE 1558 Motor Controls</td>
<td>3</td>
</tr>
</tbody>
</table>

Total Semester Credits 15

Total Program Credits 30

Minimum Program Entry Requirements
Students entering this program must meet the following minimum program entry requirements:

- **Reading**: Score of 234+
- **Writing**: Any
- **Arithmetic**: Score of 237+

Assessment Results and Prerequisites
Students admitted into Saint Paul College programs may need to complete additional courses based on assessment results and course prerequisite requirements. Certain MATH, READ, and ENGL courses have additional prerequisites.

374C
Machine Technologist **CERTIFICATE**
An eTECH 360° Program

Program Overview
This certificate will provide students with knowledge of manufacturing processes and plant operations, along with an advanced skill set in machine tool technology. Students will engage in topics of technical mathematics, introductory computer skills, print interpretation, manufacturing processes, quality control, maintenance, and safety. Also included in coursework, students will engage in topics of machine tool print reading, machine tool technology theory and lab principles, machining math, introduction to computer numerical control, and geometric dimensioning and tolerancing.

Career Opportunities
The nationwide Manufacturing Skills Standards Council (MSSC) System, based upon industry-defined and federally-endorsed national standards, offers both entry-level and incumbent workers the opportunity to demonstrate that they have acquired the skills increasingly needed in the high-growth, technology-intensive jobs of the 21st century. The MSSC System awards certificates to individuals who pass any of its four Production modules: Safety; Quality Practices & Measurement; Manufacturing Processes & Production; and Maintenance Awareness and a full Certified Production Technician (CPT) Certification to those who pass all four. Students completing this Certificate will have gained the knowledge required to pass the MSSC full-certified Production Technician Certification.

According to the Manufacturing Career Network, manufacturing is the second largest industry in Minnesota, second only to educational services, healthcare and social assistance. Minnesota manufacturers employ 390,435 people, which represents 14.4 percent of total employment. Further, manufacturing jobs in the state pay wages that are approximately 8 percent higher than those paid to the rest of the workforce. These numbers are evidence that a thriving manufacturing sector is critical to the state economy.

Program Outcomes
Graduates will be able to:
1. Identify and apply appropriate safety procedures.
2. Apply knowledge and skills to make precision-machined parts and tooling.
3. Apply knowledge and skills to operate and set-up inspection and gauging equipment.
4. Demonstrate an understanding of computer numerically controlled machining centers.
5. Analyze and apply specific manufacturing process procedures.
6. Identify and apply specific quality procedures.
7. Interpret symbols and blueprints accurately for a variety of projects.

Program Faculty
This program is taught by a variety of faculty from consortium schools.
Rainer Haarbusch
rainer.haarbusch@saintpaul.edu

Program Requirements
- **Course**
 - CMAE 1502 Technical Math
 - CMAE 1510 Print Reading
 - CMAE 1518 Manufacturing Processes
 - CMAE 1514 Safety Awareness
 - CMAE 1530 Machining Math
 - CMAE 1532 Machine Tool Print Reading
 - CMAE 1506 Intro to Computers
 - CMAE 1534 Machine Tool Technology Theory
 - CMAE 1536 Machine Tool Technology Lab 1
 - CMAE 1542 Geo Dimensioning and Tolerancing
 - CMAE 1526 Maintenance Awareness
 - CMAE 1522 Quality Practices
 - CMAE 1538 Machine Tool Technology Lab 2
 - CMAE 1540 Introduction to CNC

Total Program Credits
30

eTECH Programs
The eTECH programs are offered by a group of partner institutions working together integrates traditional classroom learning with partial on-site lab work for the online delivery of courses where learners can advance their skills in manufacturing and engineering, while continuing to work in their current profession. Many courses are available online. The programs are designed to offer entry-level and operator-level skills and knowledge, which prepares them for a career, instead of just an entry-level job. Because eTECH is part of the 360° consortium of two-year colleges and a four-year university, it provides a unique ability to implement seamless career pathways from secondary to two-year college to four-year university.

Program Start Date
Fall, Spring

Course Sequence

First Semester
- (First 8 weeks)
 - CMAE 1502 Technical Math
 - CMAE 1510 Print Reading
- (Second 8 weeks)
 - CMAE 1518 Manufacturing Processes
 - CMAE 1514 Safety Awareness
 - CMAE 1530 Machining Math
 - CMAE 1532 Machine Tool Print Reading
 - CMAE 1506 Intro to Computers
 - CMAE 1534 Machine Tool Technology Theory
 - CMAE 1536 Machine Tool Technology Lab 1
 - CMAE 1542 Geo Dimensioning and Tolerancing
- **Total Semester Credits**
 13

Second Semester
- (First 8 Weeks)
 - CMAE 1506 Intro to Computers
 - CMAE 1534 Machine Tool Technology Theory
 - CMAE 1536 Machine Tool Technology Lab 1
 - CMAE 1542 Geo Dimensioning and Tolerancing
- (Second 8 Weeks)
 - CMAE 1526 Maintenance Awareness
 - CMAE 1522 Quality Practices
 - CMAE 1538 Machine Tool Technology Lab 2
 - CMAE 1540 Introduction to CNC
- **Total Semester Credits**
 17

Total Program Credits
30

Minimum Program Entry Requirements
Students entering this program must meet the following minimum program entry requirements:
- **Reading**: Score of 234+
- **Writing**: Any
- **Arithmetic**: Score of 237+

Assessment Results and Prerequisites
Students admitted into Saint Paul College programs may need to complete additional courses based on assessment results and course prerequisite requirements. Certain MATH, READ, and ENGL courses have additional prerequisites.
Machining and Automation DIPLOMA
An eTECH 360° Program

Program Overview
This diploma will provide students with a valuable skill set designed to meet the needs of the advanced manufacturing industry. Students may choose the Machining and Automation emphasis. Through coursework, the student will develop fundamental knowledge of manufacturing processes, safety, quality, machine tool technology, and automation technology.

Career Opportunities
The nationwide Manufacturing Skills Standards Council (MSSC) System, based upon industry-defined and federally-endorsed national standards, offers both entry-level and incumbent workers the opportunity to demonstrate that they have acquired the skills increasingly needed in the high-growth, technology-intensive jobs of the 21st century. The MSSC System awards certificates to individuals who pass any of its four Production modules: Safety; Quality Practices & Measurement; Manufacturing Processes & Production; and Maintenance Awareness and a full Certified Production Technician (CPT) Certification to those who pass all four. Students completing this Diploma will have gained the knowledge required to pass the MSSC full-certified Production Technician Certification.

According to the Manufacturing Career Network, manufacturing is the second largest industry in Minnesota, second only to educational services, healthcare and social assistance. Minnesota manufacturers employ 390,435 people, which represents 14.4 percent of total employment. Further, manufacturing jobs in the state pay wages that are approximately 8 percent higher than those paid to the rest of the workforce. These numbers are evidence that a thriving manufacturing sector is critical to the state economy.

Program Outcomes
Graduates will be able to:
1. Identify and apply appropriate safety procedures.
2. Apply knowledge and skills in electrical systems.
3. Apply knowledge and skills to make precision-machined parts and tooling.
4. Apply knowledge and skills to operate and set-up inspection and gauging equipment.
5. Analyze and apply specific manufacturing process procedures.
6. Identify and apply specific quality procedures.
7. Interpret symbols and blueprints accurately for a variety of projects.
8. Demonstrate effective oral and written communications.

Program Faculty
This program is taught by a variety of faculty from consortium schools.
Rainer Haarbusch
rainer.haarbusch@saintpaul.edu

Program Requirements
☐ Check off when completed

Certain classes must be taken concurrently and certain classes are prerequisites to other classes.

<table>
<thead>
<tr>
<th>Course</th>
<th>Cr</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMAE 1502 Technical Math</td>
<td>3</td>
</tr>
<tr>
<td>CMAE 1510 Print Reading</td>
<td>2</td>
</tr>
<tr>
<td>CMAE 1550 DC Power</td>
<td>3</td>
</tr>
<tr>
<td>CMAE 1518 Manufacturing Processes</td>
<td>2</td>
</tr>
<tr>
<td>CMAE 1514 Safety Awareness</td>
<td>2</td>
</tr>
<tr>
<td>CMAE 1552 AC Power</td>
<td>3</td>
</tr>
<tr>
<td>CMAE 1506 Intro to Computers</td>
<td>2</td>
</tr>
<tr>
<td>CMAE 1554 Digital Electronics</td>
<td>3</td>
</tr>
<tr>
<td>CMAE 1556 Analog Circuits</td>
<td>3</td>
</tr>
<tr>
<td>CMAE 1526 Maintenance Awareness</td>
<td>2</td>
</tr>
<tr>
<td>CMAE 1522 Quality Practices</td>
<td>2</td>
</tr>
<tr>
<td>CMAE 1558 Motor Controls</td>
<td>2</td>
</tr>
<tr>
<td>CMAE 1530 Machining Math</td>
<td>2</td>
</tr>
<tr>
<td>CMAE 1532 Machine Tool Print Reading</td>
<td>2</td>
</tr>
<tr>
<td>CMAE 1534 Machine Tool Technology</td>
<td>2</td>
</tr>
<tr>
<td>CMAE 1536 Machine Tool Technology Lab</td>
<td>2</td>
</tr>
<tr>
<td>CMAE 1542 Geo Dimensioning and Tolerancing</td>
<td>2</td>
</tr>
<tr>
<td>CMAE 1538 Machine Tool Technology Lab</td>
<td>2</td>
</tr>
<tr>
<td>CMAE 1540 Introduction to CNC</td>
<td>3</td>
</tr>
</tbody>
</table>

Subtotal. .. 45

General Education Cr
☐ MATH 1730 College Algebra 3
☐ ENGL 1711 Composition 1 4
Total General Education 7

Total Program Credits. 52

Program Start Date
Fall, Spring

See back of this guide for Course Sequence

eTECH Programs
The eTECH programs are offered by a group of partner institutions working together integrates traditional classroom learning with partial on-site lab work for the online delivery of courses where learners can advance their skills in manufacturing and engineering, while continuing to work in their current profession. Many courses are available online. The programs are designed to offer entry-level and operator-level skills and knowledge, which prepares them for a career, instead of just an entry-level job. Because eTECH is part of the 360° consortium of two-year colleges and a four-year university, it provides a unique ability to implement seamless career pathways from secondary to two-year college to four-year university.

360etech.org

Minimum Program Entry Requirements
Students entering this program must meet the following minimum program entry requirements:
Reading: Score of 234+
Writing: Any
Arithmetic: Score of 237+
Assessment Results and Prerequisites:
Students admitted into Saint Paul College programs may need to complete additional courses based on assessment results and course prerequisite requirements. Certain MATH, READ, and ENGL courses have additional prerequisites.
Course Sequence

The following sequence is subject to Training Coordinator/Committee approval. This program begins fall semester.

First Semester

(First 8 weeks)
- CMAE 1502 Technical Math 3
- CMAE 1510 Print Reading 2
- CMAE 1550 DC Power 3

(Second 8 weeks)
- CMAE 1518 Manufacturing Processes 2
- CMAE 1514 Safety Awareness 2
- CMAE 1552 AC Power 3

Total Semester Credits 15

Second Semester

(First 8 Weeks)
- CMAE 1506 Intro to Computers 2
- CMAE 1554 Digital Electronics 3
- CMAE 1556 Analog Circuits 3

(Second 8 Weeks)
- CMAE 1526 Maintenance Awareness 2
- CMAE 1522 Quality Practices 2
- CMAE 1558 Motor Controls 3

Total Semester Credits 15

Third Semester

(First 8 Weeks)
- MATH 1730 College Algebra 3
- ENGL 1711 Composition 1 4

(Second 8 Weeks)
- CMAE 1530 Machining Math 2
- CMAE 1532 Machine Tool Print Reading 2

Total Semester Credits 11

Fourth Semester

(First 8 Weeks)
- CMAE 1534 Machine Tool Technology Theory 2
- CMAE 1536 Machine Tool Technology Lab 1 2
- CMAE 1542 Geo Dimensioning and Tolerancing 2

(Second 8 Weeks)
- CMAE 1538 Machine Tool Technology Lab 2 2
- CMAE 1540 Introduction to CNC 3

Total Semester Credits 11

Total Program Credits 52
Production Technologies CERTIFICATE
An eTECH 360° Program

Program Overview
This certificate will provide students with the training, education, and skills to build a base knowledge of manufacturing processes and plant operations, generally for entry-level positions. Graduates can use the knowledge gained in this Certificate to build upon a manufacturing career path leading to higher-level careers like Automation, Machining, and Welding. Students will engage in coursework topics of career success skills, technical mathematics, introductory computer skills, print interpretation, manufacturing processes, quality control, maintenance, and safety.

Career Opportunities
The nationwide Manufacturing Skills Standards Council (MSSC) System, based upon industry-defined and federally-endorsed national standards, offers both entry-level and incumbent workers the opportunity to demonstrate that they have acquired the skills increasingly needed in the high-growth, technology-intensive jobs of the 21st century. The MSSC System awards certificates to individuals who pass any of its four Production modules: Safety; Quality Practices & Measurement; Manufacturing Processes & Production; and Maintenance Awareness and a full Certified Production Technician (CPT) Certification to those who pass all four. Students completing the Production Technologies Certificate will have gained the knowledge required to pass the MSSC full-certified Production Technician Certification.

According to the Manufacturing Career Network, manufacturing is the second largest industry in Minnesota, second only to educational services, healthcare and social assistance. Minnesota manufacturers employ 390,435 people, which represents 14.4 percent of total employment. Further, manufacturing jobs in the state pay wages that are approximately 8 percent higher than those paid to the rest of the workforce. These numbers are evidence that a thriving manufacturing sector is critical to the state economy.

Program Outcomes
Graduates will be able to:
1. Identify and apply appropriate safety procedures.
2. Use technical mathematics to solve problems.
3. Demonstrate use of common computer software.
4. Analyze and apply specific manufacturing process procedures.
5. Identify and apply specific quality procedures.
6. Interpret symbols and blueprints accurately for a variety of projects.
7. Identify appropriate and inappropriate professional behavior.

Program Faculty
This program is taught by a variety of faculty from consortium schools.
Rainer Haarbusch
raher haarbusch@saintpaul.edu

Program Requirements
☐ Check off when completed
Certain classes must be taken concurrently and certain classes are prerequisites to other classes.

Course
Course Cr
☐ CMAE 1502 Technical Math 3
☐ CMAE 1510 Print Reading 2
☐ CMAE 1518 Manufacturing Processes 2
☐ CMAE 1514 Safety Awareness 2
☐ CMAE 1506 Intro to Computers 2
☐ CMAE 1528 Career Success Skills 1
☐ CMAE 1526 Maintenance Awareness 2
☐ CMAE 1522 Quality Practices 2

Total Program Credits 16

Program Start Date
Fall, Spring

Course Sequence
First Semester (First 8 weeks)
CMAE 1502 Technical Math 3
CMAE 1510 Print Reading 2

(Second 8 weeks)
CMAE 1518 Manufacturing Processes 2
CMAE 1514 Safety Awareness 2
CMAE 1506 Intro to Computers 2
CMAE 1526 Maintenance Awareness 2
CMAE 1522 Quality Practices 2
Total Semester Credits 9

Second Semester (First 8 Weeks)
CMAE 1506 Intro to Computers 2
CMAE 1528 Career Success Skills 1
(Second 8 Weeks)
CMAE 1526 Maintenance Awareness 2
CMAE 1522 Quality Practices 2
Total Semester Credits 7
Total Program Credits 16

Minimum Program Entry Requirements
Students entering this program must meet the following minimum program entry requirements:
Reading: Score of 234+
Writing: Any
Arithmetic: Score of 237+

Assessment Results and Prerequisites:
Students admitted into Saint Paul College programs may need to complete additional courses based on assessment results and course prerequisite requirements. Certain MATH, READ, and ENGL courses have additional prerequisites.

Information is subject to change.
This Program Requirements Guide is not a contract.

361C

360etech.org
Welding Technology CERTIFICATE
An eTECH 360° Program

Program Overview
This certificate will provide students with knowledge of manufacturing processes and plant operations, along with an advanced skill set in welding technology and processes. Students will engage in topics of technical mathematics, introductory computer skills, print interpretation, manufacturing processes, quality control, maintenance, and safety. Also included in coursework, students will engage in topics of welding symbols, metallurgy, Plasma Arc Cutting and Air Carbon Arc Cutting (OxyFuel), Shielded Metal Arc Welding (SMAW), Gas Metal Arc Welding (GMAW) and Flux Core Arc Welding (FCAW), and Gas Tungsten Arc Welding (GTAW).

Career Opportunities
The nationwide Manufacturing Skills Standards Council (MSSC) System, based upon industry-defined and federally-endorsed national standards, offers both entry-level and incumbent workers the opportunity to demonstrate that they have acquired the skills increasingly needed in the high-growth, technology-intensive jobs of the 21st century. The MSSC System awards certificates to individuals who pass any of its four Production modules: Safety; Quality Practices & Measurement; Manufacturing Processes & Production; and Maintenance Awareness and a full Certified Production Technician (CPT) Certification to those who pass all four. Students completing this Certificate will have gained the knowledge required to pass the MSSC full-certified Production Technician Certification. According to the Manufacturing Career Network, manufacturing is the second largest industry in Minnesota, second only to educational services, healthcare and social assistance. Minnesota manufacturers employ 390,435 people, which represents 14.4 percent of total employment. Further, manufacturing jobs in the state pay wages that are approximately 8 percent higher than those paid to the rest of the workforce. These numbers are evidence that a thriving manufacturing sector is critical to the state economy.

Program Outcomes
Graduates will be able to:
1. Identify and apply appropriate safety procedures.
2. Analyze and apply specific manufacturing process procedures.
3. Identify and apply specific quality procedures.
4. Identify and select the proper filler metal dependent on base metal to be welded.
5. Troubleshoot and solve common problems involved with everyday use of a welding machine.
6. Fabricate several different welding projects to demonstrate expected skills required by industry standards.
7. Interpret symbols and blueprints accurately for a variety of projects.

Program Faculty
This program is taught by a variety of faculty from consortium schools.
Rainer Haarbusch
rainer.haarbusch@saintpaul.edu

Program Requirements
☐ Check off when completed
Certain classes must be taken concurrently and certain classes are prerequisites to other classes.

Course	Cr
CMAE 1502 Technical Math | 3
CMAE 1510 Print Reading | 2
CMAE 1518 Manufacturing Processes | 2
CMAE 1562 Oxy Fuel | 2
CMAE 1506 Intro to Computers | 2
CMAE 1564 SMAW | 3
CMAE 1526 Maintenance Awareness | 2
CMAE 1570 Metallurgy | 1
CMAE 1566 GMAW/GTAW | 3
CMAE 1514 Safety Awareness | 2
CMAE 1560 Interpreting Welding Symbols | 2
CMAE 1568 GTAW | 2
CMAE 1522 Quality Practices | 2

Total Program Credits 30

eTECH Programs
The eTECH programs are offered by a group of partner institutions working together integrates traditional classroom learning with partial on-site lab work for the online delivery of courses where learners can advance their skills in manufacturing and engineering, while continuing to work in their current profession. Many courses are available online. The programs are designed to offer entry-level and operator-level skills and knowledge, which prepares them for a career, instead of just an entry-level job. Because eTECH is part of the 360° consortium of two-year colleges and a four-year university, it provides a unique ability to implement seamless career pathways from secondary to two-year college to four-year university.

Program Start Date
Fall, Spring

Course Sequence
First Semester
(First 8 weeks)
CMAE 1502 Technical Math | 3
CMAE 1510 Print Reading | 2
(Second 8 weeks)
CMAE 1518 Manufacturing Processes | 2
CMAE 1562 Oxy Fuel | 2
Total Semester Credits 10

Second Semester
(First 8 Weeks)
CMAE 1564 SMAW | 3
(Second 8 Weeks)
CMAE 1526 Maintenance Awareness | 2
CMAE 1570 Metallurgy | 1
Total Semester Credits 8

Third Semester
(First 8 Weeks)
CMAE 1566 GMAW/GTAW | 3
(Second 8 Weeks)
CMAE 1514 Safety Awareness | 2
CMAE 1560 Interpreting Welding Symbols | 2
Total Semester Credits 7

Fourth Semester
First 8 Weeks
CMAE 1568 GTAW | 3
(Second 8 Weeks)
CMAE 1522 Quality Practices | 2
Total Semester Credits 5
Total Program Credits 30

Minimum Program Entry Requirements
Students entering this program must meet the following minimum program entry requirements:
Reading: Score of 234+
Writing: Any
Arithmetic: Score of 237+

Assessment Results and Prerequisites:
Students admitted into Saint Paul College programs may need to complete additional courses based on assessment results and course prerequisite requirements. Certain MATH, READ, and ENGL courses have additional prerequisites.